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ABSTRACT
Spatial event detection is an important and challenging prob-
lem. Unlike traditional event detection that focuses on the
timing of global urgent event, the task of spatial event de-
tection is to detect the spatial regions (e.g. clusters of neigh-
boring cities) where urgent events occur. In this paper, we
focus on the problem of spatial event detection using textual
information in social media. We observe that, when a spatial
event occurs, the topics relevant to the event are often dis-
cussed more coherently in cities near the event location than
those far away. In order to capture this pattern, we propose
a new method called Graph Topic Scan Statistic (Graph-
TSS) that corresponds to a generalized log-likelihood ratio
test based on topic modeling. We first demonstrate that
the detection of spatial event regions under Graph-TSS is
NP-hard due to a reduction from classical node-weighted
prize-collecting Steiner tree problem (NW-PCST). We then
design an efficient algorithm that approximately maximizes
the graph topic scan statistic over spatial regions of arbi-
trary form. As a case study, we consider three applications
using Twitter data, including Argentina civil unrest event
detection, Chile earthquake detection, and United States
influenza disease outbreak detection. Empirical evidence
demonstrates that the proposed Graph-TSS performs su-
perior over state-of-the-art methods on both running time
and accuracy.
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1. INTRODUCTION
Spatial event detection, such as detection of disease out-

breaks, civil unrests, earthquake, and financial crises, is an
important and challenging problem. Unlike traditional event
detection that focuses on the timing of global urgent event,
the task of spatial event detection is to detect spatial region-
s (e.g. clusters of neighboring cities) where urgent events
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Figure 1: A potential cholera outbreak leads to el-
evated intensities of infected cases in counties near
the river, which forms as an irregularly shaped con-
nected sub-graph (cluster) of counties. (Redrawn
from[25])

occur. To motivate this scenario, consider the cholera out-
break problem [25] as shown in Figure 1. Suppose we have a
network of counties (vertices) and each vertex has a feature
referring to the number of cases of cholera in that county
on a given day. Suppose further that two vertices are con-
nected by an edge if they share a boundary. The task is to
detect spatial regions (connected sub-graphs) of arbitrary
form as indicators of ongoing cholera outbreaks in the noisy
background data.

Spatial event detection usually utilizes traditional chan-
nels, where collection of information, such as patient da-
ta, crimes, and financial transaction, is hysteretic and cost-
ly. With the popularity of low-cost GPS chips and smart
phones, micro-blogging services such as Twitter, Tumblr and
Weibo have become important tools for online users to share
breaking news, interesting stories and rich media content.
Unlike traditional media or channels, social microblogs me-
dia provides a more fruitful, timely and vast amount of data
available on the Internet at almost no cost. Social media
also helps spread information earlier and faster than tradi-
tional media. For example, Twitter firstly leaked credible
word of Osama bin Laden’s death before President Obama’s
announcement, and there were a half million tweets (and
only 800 news mentions) one hour after the event [1]. An-
other example is that, the information of pestilence spreads
in the social media before newspaper or TV’s announcemen-
t [6]. Because social media often discusses these events in
advance, compared with the tradition media, it can be a sig-
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nificant study to detect the urgent event by using the textual
information of social media.

However, the language used in social media is highly in-
formal, ungrammatical, and dynamic, and thus traditional
natural language processing (NLP) techniques cannot be di-
rectly applied. Different events tend to have different con-
texts, and their relevant keywords are often unpredictable.
It is hence difficult to develop an event detection model di-
rectly based on keyword frequencies. Instead, we focus on
topic-level analysis, as topics are considered high-level se-
mantic summarizations of a corpus from different aspects.
We observe that, when a spatial event occurs, the topics
relevant to the event are often discussed more coherently in
cities near the event location than those far away. For exam-
ple, people lived in “civil unrest” event region may discuss
more related topics, such as strike, work, teacher, while peo-
ple lived outside the region may discuss other popular top-
ics. We thus propose a new method called Graph Topic S-
can Statistic (Graph-TSS) that corresponds to a generalized
log-likelihood ratio test (GLRT) to decide between the null
hypothesis (H0): the topic of each tweet posted at any city
follows the same multinomial distribution Multinomial(π),
and the alternative hypothesis (H1(S)): the topic of each
tweet posted within the event region S follows a differen-
t multinomial distribution Multinomial(θ), and the topic
of each tweet posted outside the event region S follows the
multinomial distribution Multinomial(π), where θ 6= π.
The problem of spatial event detection is then formalized
as the maximization of the corresponding generalized log-
likelihood ratio function over all possible spatial regions.
Then, empirical calibration approach is employed to deal
with the multiple testing issue. Specifically, to ensure the
identified anomalous sub-graph is statistically significant at
the 1 − α (e.g α = 0.05) confidence level, we estimate a
threshold such that the probability of the current test statis-
tic Graph-TSS being above the threshold is α under the null
hypothesis. If the test statistic Graph-TSS of the identified
sub-graph is above the empirically calibrated threshold, we
will reject the null hypothesis of no sub-graph, i.e. an alert
will be raised.

We note that, although a number of geographical topic
models have been proposed in recent years [19, 9, 33, 17,
4, 11, 16], these models cannot identify subtle signals of co-
herent regional topics in noisy social media data that are
important for the detection of spatial events in their early
stages, as these models are all generative probabilistic mod-
els, and do not have sufficient discriminative power for this
specific task. Our proposed Graph-TSS has strong connec-
tions to traditional spatial scan statistic models that have
been shown effective in a variety of applications related to
spatial event detection, such as detection of road traffic con-
gestion [24], water pollution [32], crime hotspots [20, 30], and
disease outbreaks [14]. These spatial scan statistic model-
s are designed for analyzing non-textual data (e.g., counts
of infected cases) collected from traditional sources such as
hospitals, emergency departments, and drug stores. Our
proposed Graph-TSS can be considered a new variant of s-
patial scan statistic for analyzing noisy textual data. The
main contributions of this paper are as follows:

• Formulation of a new Graph topic scan statis-
tic. We formulate a new Graph-TSS based on gener-
alized log-likelihood ratio test and topic models. To
the best of our knowledge, this is the first kind of s-

patial scan statistic for spatial event detection using
noisy textual data.

• Development of an approximate algorithm for
graph scanning. We prove that the spatial event
detection problem under Graph-TSS is NP-hard via a
reduction from classical node-weighted prize-collecting
Steiner tree problem (NW-PCST), and develop an ef-
ficient algorithm that approximately maximizes the
Graph-TSS over all possible spatial regions, with time
complexity around O(|E| log3 |V|), where |V| and E re-
fer to the total number of vertices and the number of
edges, respectively.

• Comprehensive experiments to validate the ef-
fectiveness and efficiency of the proposed al-
gorithm. We conduct the experiments on the real
Twitter data and practical applications. According to
the results, the proposed method outperforms exist-
ing methods for the three applications, including civil
unrest detection, earthquake detection, and influenza
disease outbreak detection.

The rest of this paper is organized as follows: Section 2
introduces the related work. Section 3 presents a detailed
analysis of civil unrest event patterns on real Twitter data.
We present the proposed Graph-TSS and approximation al-
gorithm for sub-graph detection in Section 4. Experiments
on real Twitter datasets and the three practical applications
are presented in Section 5. Section 6 concludes our work and
describes the future work.

2. RELATED WORK
We briefly review three lines of related work: Spatial s-

can statistic-based methods, Geographical topic models, and
Burst detection-based approaches.

Spatial scan statistic based methods detect connect-
ed or correlated subgraphs which are unexpected given the
typical data distribution (e.g. Gaussian, Poisson, or mixture
of Gaussians). Existing methods can be categorized into t-
wo groups, namely parametric and nonparametric methods.
Parametric methods assume specific forms of distribution
for features of normal and abnormal vertices, respectively,
and formalize the anomaly detection as a hypothesis test-
ing problem. Depending on the specific forms of distribu-
tions assumed, a number of methods have been proposed,
including Kulldorff’s spatial scan statistic [13], expectation
based scan statistic [23, 21], the elevated mean scan statistic
[26], and various other variant scan statistic methods. Here,
Kulldorff’s spatial scan statistic and expectation based scan
statistic utilize the observed count (number of cases), e.g.
the number of patients, to detect the area of outbreak even-
t. On the other hand, nonparametric methods estimate
a p-value for each vertex of spatial graph by comparing the
current features of this vertex with its features in the histor-
ical data [5, 18, 27], rather than associating specific forms
of distributions with normal and abnormal vertices. These
approaches usually maximize a score function F (S) of p-
value in a sub-graph S, and typically nonparametric meth-
ods measure the significance of the collection of p-values in
sub-graph. Recent studies [5, 32] show that these approach-
es perform better than the burst detection-based methods
in the problem of spatial event detection. However, non-
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parametric methods do not capture the latent semantics in
textual information.

Geographical topic models [19, 9, 33, 4, 11] estimate
language distributions (over a predefined vocabulary) that
are distinct in some geographic regions. For example, sever-
al normal distributions are assigned to regions which have a
distribution over the set of topics in Yin’s model or Hong’s
model [9, 33, 4]. Clearly, there now can be several Gaussian
regions sharing the same topic. Therefore, these models can
discover some geographical regions / sub-graphs whose top-
ics are distinct from others. A more general approach for
modelling arbitrary, complex features such as geolocation-
s was introduced by Agovic and Banerjee [3]. Given that
the similarity between topic distributions of documents di-
rectly depends on their respective position in the feature s-
pace, topic distributions of documents can be sampled from
a Gaussian process (GP) prior which encodes the similarity
of couments in the feature space. Essentially, geographical
topic models aim to partition the global region into several
sub-regions, and assign all sub-regions with distinct label-
s, such as coastline or mountain. Therefore, the specific
purpose leads to the weak performance in the problem of
spatial event detection. The latter contains many new phe-
nomena which we have not seen in the geographical topic
modeling regime, to discover which, we need new method-
s and new theoretic frameworks. In addition, geographical
topic model-based approaches can only detect event in ge-
ographical graph. Thus, they cannot be directly applied to
document streams that are embedded in a general graph,
e.g. social network relationship graph.

Burst detection-based methods search for space-time
regions / sub-graphs where the aggregated counts of some
predefined terms are abnormally high compared with the
counts outside the regions / sub-graphs. Here, some exten-
sion methods like, ST Burst Detection [15], Feature-pivot
Clustering [7] and the burst detection technique proposed by
Kleinberg [10] are popular. Sakaki et al.[28] consider spatial-
temporal Kalman filtering, which is similar to space-time
burst detection to track the geographical trajectory of hot
spots of tweets related to earthquakes. However, as a tradi-
tional event detection methods, burst detection-based meth-
ods focus on the detection of events influencing the global
region. For example, it can discover the burst timing and
regions when the large-scale disease outbreak appears, be-
cause the signal becomes significant in the large-scale event.
In addition, different events tend to have different contexts,
and their relevant keywords are often unpredictable, which
constantly result in loss of detection.

In summary, the proposed Graph-TSS utilizes the latent
semantics of textual information for spatial event detection,
while both burst detection-based methods and nonparamet-
ric methods cannot capture the latent semantics of textu-
al information. In addition, Graph-TSS can detect the lo-
cal events (i.e. only significant in local area) by using the
proposed efficient scan algorithm, while geographical topic
models-based approaches only aim to partition the global
region into several distinct sub-regions.

3. DATA ANALYSIS
The motivation for this work is firmly built on the obser-

vations of social media data and real-world events. We opt-
ed to use Twitter dataset because of its ready accessibility
through APIs. In this section, we provide some analysis on
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Figure 2: Example topic distributions with respec-
t to civil unrest event from Oct 1st, 2013 to Dec
31st, 2013. The horizontal axis refers to topic in-
dex, while the vertical axis refers to probability of
the corresponding topic. Green curves are used to
fit the topic distributions.

twitter data and ground truth civil unrest events as a base
for our method construction, which makes our assumption
more reliable.

We collected three months Twitter data from Argentina,
and the civil unrest event labels, called Golden Standard
Report (GSR), were collected and confirmed from the local
newspapers that are accessible from Internet. Specifically,
there are 12 events and 0.58 million tweets in each week on
average (0.02 million tweets in event area and 0.56 million
tweets in normal area). Topic modeling was used to extract
the topics of tweets and analyze the topic distributions of
event region and non-event (normal) region.

Figure 2 shows three example weekly topic distributions
in normal area and event area. We observe that the topic
distributions of these three weeks are very similar in normal
area, and they are significantly different from the topic dis-
tributions in event area, especially the probability of topic
10.

In order to demonstrate the comprehensive observation,
we present all weekly topic distributions (totally 13 week-
s). Topic distribution (multinomial distribution) is fitted by
curve. Figure 3 shows the comparison of topic distribution-
s of normal area and event area during the consecutive 13
weeks, and result demonstrates topic distributions in even-
t area are different from the topic distributions in normal
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area. As expected, we observe that the topic distribution
are very similar in normal area.

4. GRAPH TOPIC SCAN STATISTIC
In this section, we propose a novel method called Graph

Topic Scan Statistic (Graph-TSS), which combines scan s-
tatistic, sub-graph detection and topic modeling together.
Specifically, we start with an overview of the basic idea in
Section 4.1; section 4.2 presents the proposed Graph-TSS;
and section 4.3 presents an efficient approximate algorithm
that maximizes the Graph-TSS over connected sub-graphs
to identify the most anomalous graph clusters.

4.1 General Idea
People like to post information occurred nearby, e.g. tweet-

s, on the social media, and social media also helps spread
information earlier and faster. For example, users who live in
the “civil unrest” event region are more likely to post tweets
related to this “civil unrest” event on the early time, while
other users are less likely to post tweets about this even-
t. That means that the topic popularity may be different
between inside and outside the event region. For instance,
people lived in “civil unrest” event region may discuss more
related topics, such as strike, work, teacher, and people lived
outside the region may discuss other popular topics. The
results of data analysis described above also quantitatively
confirm this intuition. Therefore, we aim to utilize this ob-
servation to find the most anomalous sub-graph region S,
where the topic popularity is different.

The proposed method, Graph-TSS, will return a sub-graph
(i.e. abnormal area) of the spatial graph that approximate-
ly maximizes the proposed graph-TSS, which is formulated
based on the log-likelihood ratio. The log-likelihood ratio
can be regarded as the degree of difference between the sub-
graph (event) region and normal region. Therefore, the de-
tected sub-graph S is the region where topic distribution
is significantly distinct. Here, the returned sub-graph con-
sists of one or several connected component(s), because most
spatial events, e.g. civil unrest, earthquake or infectious dis-
ease, occurred in one or several connected regions. In real
world, the connected sub-graph can be regarded as a cluster
of neighboring cities, which share boundaries, and isolated
city never exist. Note that the present work is the first work
to propose the concept of Graph topic scan statistic.

4.2 Formulation of Graph Topic Scan Statis-
tic

We assume that the collection of geocoded documents D
has an embedded graph. Suppose we have a network of c-
ities of a country, and the network can be regarded as a
undirected graph. Given the Graph, each vertex refers to a
location (e.g. city) l in the country, which has many geocod-
ed documents Dl that consist of a collection of keywords −→wd.
Suppose further that two vertices are connected by an edge
if they share a boundary. We wish to identify possible event
outbreaks sub-graph S at an early stage in the noisy back-
ground data.

In order to determine which connected sub-graph S is the
most anomalous, we generalize the Graph-TSS, which ex-
tends Kulldorff’s spatial scan statistic and was originally
proposed for modeling spatial-temporal count data. The
Graph-TSS detects an anomalous sub-graph by searching
over a large number of sub-graphs, where each sub-graph S
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Figure 3: Topic distribution per week with respect
to civil unrest event from Oct 1, 2013 to Dec 31,
2013. Blue curves refer to the topic distribution of
each week in normal area, while green curves refer
to the topic distribution of each week in event area.

consists of some subset of the locations l, and finding the
sub-graph S which maximizes the Graph-TSS. We formally
define a topic to be a distribution over a fixed vocabulary,
and topics represent the semantic summarizations of a cor-
pus. We firstly give the definitions of null hypothesis H0

and alternative hypotheses H1(S).
H0: refers that the topic of each document d posted at any

vertex follows the same multinomial distributionMultinomial(π),
i.e. zd ∼Multinomial(π), ∀d.

H1(S): assumes that the topic of each document d posted
outside S follows the multinomial distributionMultinomial(π),
and the topic of each document d posted within S follows a
different multinomial distributionMultinomial(θ), i.e. zd ∼
Multinomial(θ), ∀d posted in S; zd ∼ Multinomial(π),
otherwise; where θ 6= π.

Given a set of alternative hypotheses H1(S) and a null
hypothesis H0, the Graph-TSS F (S) for a given sub-graph
S is the ratio of the data log-likelihood under the alternative
and null hypotheses:

F (S) = log
(maxθ Pr(Data|H1(S), θ)

Pr(Data|H0, π)

)
(1)

where θ and π refer to the topic distributions of the col-
lection of geocoded documents in sub-graph S and normal
region, respectively.

The assumption that we fix topic distribution under null
hypothesis H0 lays on two reasons. First, we observe this
pattern in data analysis. Second, in order to detect changes
of topic distributions as indicators of spatial events, we need
to fix the background distribution.

The sub-graph S with the highest values of the Graph-TSS
is that which are most likely to have been generated under
the alternative hypothesis instead of the null hypothesis of
no sub-graph.

To ensure the identified anomalous sub-graph is statis-
tically significant at the 1 − α (e.g α = 0.05) confidence
level, we need to estimate a significant threshold such that
the probability of the current test statistic Graph-TSS being
above the threshold is α under the null hypothesis. Tradi-
tional spatial scan statistic approaches [13] deal with this
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Table 1: Notations used in Graph-TSS
Symbol Description

L Collection of locations
D Collection of geocoded documents

Dl
Collection of geocoded documents posted at
location l

d Document identity
w Word identity
−→wd Word vector of document d
z Topic assignment of a document
l Location (e.g. city) identity

S Abnormal sub-graph region
B Normal region

x
The vector form of S, i.e. S =supp(x),

x ∈ {0, 1}|L|

φ Topic word distribution
θ Topic distribution in sub-graph region
π Topic distribution in normal region

α The statistical significant level

multiple testing issue by “randomization testing”, generat-
ing a large number of replica datasets under the null hy-
pothesis and finding the maximum sub-graph statistic score
for each replica dataset. A sub-graph S must score high-
er F (S) than approximately 95% of the replica datasets to
be significant at α = 0.05. However, randomization test-
ing is computationally expensive, multiplying the computa-
tion time by R + 1, where R is the number of Monte Carlo
replications performed. Moreover, Neill [22] indicates that
empirical calibration performed better than randomization
testing. Therefore, we use historical training data of normal
area to empirically calibrate the significant threshold. Final-
ly, if the test statistic Graph-TSS of the identified sub-graph
F (S) is above the empirically calibrated threshold, we will
reject the null hypothesis of no sub-graph, i.e. an alert will
be raised.

The notations used in the Graph-TSS are listed in Table
1.

It can be proved that finding this sub-graph, consist of
several connected components, is a NP-hard. We analyze
the hardness of this problem below.

Theorem 1. The problem 1, finding a sub-graph (u-
nions of individual trees) S that maximized Graph-TSS F (S),
is NP-hard

Proof 1. Consider an instance of the NP-hard node-
weighted prize-collecting Steiner tree problem (NW-PCST)
[12], defined by an n-node, undirected graph G = (V,E), a
non-negative cost c(v) and a non-negative penalty value σ(v)
for each vectex v ∈ V , we wish to find a tree T that mini-
mizes

∑
v∈T c(v) +

∑
v∈V \T σ(v). We show that this can be

viewed as a special case of problem 1.
Given an arbitrary instance of NW-PCST problem, the

task is equivalent to find a tree T that maximize
∑
v∈T σ(v)−∑

v∈T c(v). Denoted pv = σ(v)− c(v), pv will be positive or
negative. Therefore, the NW-PCST problem is equivalent to
find a tree that maximized

∑
v∈T p(v). Note that for an in-

stance of problem 1, we only find 1 connected tree, rather
than g connected components. For an instance of problem
1, there are only two topics and the topics inside the even-

t region and outside the event region do not overlap, i.e.
θ = I − π, I = [1, 1]T . Therefore, Graph-TSS F (S) can be
presented as:

F (S) =
∑
l∈S

∑
d∈Dl

log
Pr(d|H1(S), I − π)

Pr(d|H0, π)

Thus, this instance is equivalent to NW-PCST problem,

if we set the log-likelihood ratio
∑
d∈Dl

log Pr(d|H1(S),I−π)
Pr(d|H0,π)

in

each location is pv, where topic distribution of normal region
π can be obtained from historical data. Since the NW-PCST
problem is NP-hard , the above implies that problem 1 is also
NP-hard.

When we compute the Graph-TSS F (S), the latent pa-
rameter θ need to be estimated before. However, the latent
parameter θ cannot be estimated by using the maximum
likelihood estimation directed, and θ depends on the given
sub-graph S. To solve this problem, we employ the mix-
ture of unigrams model to model the geocoded documents
in each vertex (location). In the mixture of unigrams model,
each document only has one specific topic. Topic is influ-
enced by the property of region, i.e. whether this region
is event region or normal region. When one document is
posted in abnormal area, the corresponding topic z is gen-
erated from a topic distribution Multinomial(θ) = p(z|S).
When the document is posted in normal region B, its corre-
sponding topic z is generated from another topic distribution
Multinomial(π) = p(z|B).

To generate the above documents dataset, we employ the
following generative process:

• For each document d ∈ S, which is written in the ab-
normal area S

- Draw a topic z ∼ p(z|S)

- For each word w in document d, draw w ∼ p(w|z)

• For each document d ∈ B, which is written in the
normal region B

- Draw a topic z ∼ p(z|B)

- For each word w in document d, draw w ∼ p(w|z)

Let x ∈ {0, 1}|L| be the vector form of S. That is, if
document is posted in location l belonging to sub-graph S,
the value of xl is 1, others are 0.

Here we introduce a few notations used later:

• supp(x): the support of vector x refers to a set con-
taining the indices corresponding to nonzero entries in
x, i.e., supp(x) = {i|xi 6= 0}.

• bΩ: a vector that has (bΩ)i = bi for i ∈ Ω and (bΩ)i = 0
otherwise, given a subset Ω.

In order to estimate parameters, we use Expectation Max-
imization(EM) algorithm, which iteratively computes a local
maximum of likelihood. Given the word vector −→wd of doc-
ument d, the joint probability over d and its corresponding
topic z can be :

p(d, z) = p(−→wd, z, S,B) (2)

= p(z|S)xlp(z|B)1−xl
∏
w∈−→wd

p(w|z)
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• In E-step, the hidden variable p(z|d) is updated ac-
cording to Bayes formulas as in Equation 3.

p(z|d) =
p(d, z)

p(d)
=

p(d, z)∑
z p(d, z)

=
p(z|S)xlp(z|B)1−xl

∏
w∈−→wd

p(w|z)∑
z p(z|S)xlp(z|B)1−xl

∏
w∈−→wd

p(w|z) (3)

• In M-step, we find the estimation parameter that max-
imizes the expectation of the complete likelihood, i.e.
argmaxθ

∑
z p(z|d) log

∏
d∈D p(d, z), using the follow-

ing updating formulas:

θ = p(z|S) =

∑
l∈L
∑
d∈Dl

xlp(z|d)∑
l∈L xl|Dl|

(4)

The topic distribution in normal region p(z|B) =
∑

d∈D p(z|d)
D

and word distributions p(w|z) =
∑

d∈D c(d,w)p(z|d)∑
w∈V

∑
d∈D c(d,w)p(z|d) are

learnt from historical normal region data. In addition, we as-
sume the word distributions φ = p(w|z) are the same both
inside and outside the sub-graph S. An emerging spatial
event is characterized as a new topic distribution, instead of
new topics.

Combining the above equations, the Graph-TSS can be
described as following formulas:

f(x) = log(

∏
l∈L(

∏
d∈Dl

∑
z p(z, d|θ))

xl∏
l∈L(

∏
d∈Dl

∑
z p(z, d|π))xl

)

=
∑
l∈L

(
xl
∑
d∈Dl

log(

∑
z p(z, d|θ)∑
z p(z, d|π)

)
)

(5)

where f(x) ≡ F (S), S = supp(x). And f(x) can be ex-
pressed by the linear combination of the Graph-TSS in each
location l.

4.3 Approximation Algorithm for Sub-graph
Detection

Based on the proposed Graph-TSS, the task of Graph-
TSS is to return a sub-graph S that maximized the proposed
Graph-TSS F (S) defined in Equation 5. In order to make
our method more powerful, the sub-graph S that Graph-TSS
returns consists of g connected components:

S = argmax
S⊆L,γ(S)=g,|S|≤s

F (S) (6)

where γ(S) refers to the number of connected components
in S, and s refers to the upper bound on the number of
vertices.

According to the hardness analysis, it is necessary to de-
velop approximate solutions. We now refine our anomalous
spatial event detection problem as the general sub-graph de-
tection problem, which make our algorithm can be used in
both spatial graph and general graph. The notations used
in the Sub-graph Detection are listed in Table 2.

Let G = (V,E, w) be an undirected, weighted graph with
V = {v1, · · · , vN}, E ⊆ V × V, and w : V → R denote
node weights, which can be calculated from (5). Denote

Table 2: Notations used in Sub-graph Detection
Symbol Description

G
The undirected, weighted graph derived from
the spatial graph

V The set of nodes
E The set of edges
w node weights

N the number of nodes, is equal to the |L|
defined before.

g the connected components of S
s the upper bound on the number of nodes

supp(x) a set contains the indices corresponding to
nonzero entries in vector x

bΩ
a vector that has (bΩ)i = bi for i ∈ Ω and
(bΩ)i = 0 otherwise, given a subset Ω

M = {S ⊆ V |γ(S) = g, |S| ≤ s}, and F (S) as the ob-
jective function. Then, the problem is then formulated to
maximize:

max
S∈M

F (S) (7)

As S can be represented as the vector form x ∈ [0, 1]N , the
above function can be reformulated as the following form:

max
x∈{0,1}N∩M

f(x), (8)

where f(x) refers to the vector function of F (S), and
M = {x ∈ RN | supp(x) ∈ M}. Here, the number of vertices
N is equivalent to the |L| in spatial event detection problem.

The above function is difficult to optimize as the domain
of elements of x is discrete. We use the following convex
relaxation:

max
x∈M

f(x)− 1

2
‖x‖2, (9)

The solution can be found as: xi ← 1 if xi > 0, xi ← 0
otherwise. We apply a variant of Iterative Hard Threshold-
ing (IHT), namely, Graph-IHT [34] (see in Algorithm 1), for
solving Equation 9.

Algorithm 1: Graph-IHT

Input: Graph G, upper bound number of nodes s, the
connected components g, iteration number t,
log-likelihood ratio of each city f

Result: supp(xj+1)
x0 ← 0;
for j ← 0, . . . , t− 1 do

b← −xj +∇f(xj) ;
Γ← HEADAPPROX(b,G, s, g) ;

z ← bΓ + xj ;
Ω← TAILAPPROX(z,G, s, g) ;

xj+1 ← zΩ ;

end

if (xi)
j+1 > 0 then (xi)

j+1 ← 1 else (xi)
j+1 ← 0

At first, we define two approximations algorithms, namely
tail approximation and head approximation.
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The tail approximation is defined as follows:

Ω = TAILAPPROX(b,G, s, g) (10)

And the head approximation is defined as follows:

Γ = HEADAPPROX(b,G, s, g) (11)

The tail approximation returns a sub-graph Ω ∈ M such
that ‖b− bΩ‖ ≤ cT ·minΩ′∈M ‖b− bΩ′‖, while the head ap-
proximation returns a sub-graph Γ ∈ M such that ‖bΓ‖ ≥
cH · maxΓ′∈M ‖bΓ′‖ . Here cT > 1 and cH < 1 are ar-
bitrary, fixed constants. We note that, if cT = cH = 1,
then these two approximation algorithms provides the exact
solution of the model projection. These two nearly-linear
time approximation algorithms with the above complemen-
tary approximation guarantees are proposed by Hedge et. al
[8].

Theorem 2. [34] Let x ∈ RN be an optimum solution of
Problem 9. Graph-IHT returns an estimate x̂ such that:

‖x− x̂‖2 ≤ c‖∇f(x)‖2 (12)

where c = 1 + β/(1 − α) is a fixed constant, α = (1 +

cT )(δ +
√

1− α2
0), β = (1 + cT )( β0

α0
+ α0β0√

1−α2
0+
√

1+δ
), α0 =

cH(1− δ)− δ, β0 = (1− δ)(1 + cH),∀0 < δ < 1.
Moreover, Graph-IHT runs in time:

O
(
|E| · log3 N · log(‖x‖2/‖∇f(x)‖2)

)
(13)

Proof 2. A sketch of the proof is presented to interpret
this theorem. Applying a number of algebraic manipulations,
it can be proved that the i-th iteration of Graph-IHT satisfies:

‖x− xi‖ ≤ α‖x‖2 +
β

1− α‖∇f(x)‖ (14)

Then, after t =
⌈
log
(

‖x‖2
‖∇f(x)‖2

)
/ log 1

α

⌉
iterations, Graph-

IHT will return an estimate x̂ satisfying ‖x − x̂‖2 ≤ (1 +
β

1−α )‖∇f(x)‖2.
The time complexities of both head approximation and tail

approximation are O(|E| log3 N), where |E| is the number of
edges and N is the number of nodes. And the total num-

ber of iterations is
⌈
log
(

‖x‖2
‖∇f(x)‖2

)
/ log 1

α

⌉
. Therefore, we

can derive the overall time complexity is O(|E| · log3 N ·
log(‖x‖2/‖∇f(x)‖2)).

The whole Graph-TSS is shown in Algorithm 2, and the
implementation of Graph-TSS can be divided into two stages.
On the first stage, we calculate Graph-TSS of each vertex,
given the sub-graph S, after learning the topic distribution
of sub-graph by employing the mixture of unigrams model
and EM algorithm. On the second stage, we use the Graph-
IHT that maximizes the Graph-TSS over all possible sub-
graphs to identify the most anomalous sub-graph. We repeat
the progress described above until the results converge.

Algorithm 2: Graph-TSS

Input: Collection of geocoded documents D, φ, π
learnt from historical data,G, s, g,number of
iterations t

Result: The most anomalous sub-graph S
while S not converge do

while θ not converge do
E-step: Compute hidden variable distribution
p(z|d), Eqn.(3);
M-step: Update topic distribution θ in
sub-graph S, Eqn.(4);

end
Compute f(x) for each location, Eqn(5);
S ← Graph-IHT(G, s, g, t, f); See Algorithm 1 and
Eqn.(6-11);

end

5. EXPERIMENTAL EVALUATION
This section evaluates the effectiveness and efficiency of

the proposed Graph-TSS based on comprehensive experi-
ments on Twitter data. We considered the detection of civil
unrest events such as protests and strikes, the detection of
earthquake, and the detection of influenza outbreak as three
case study scenarios, but the proposed Graph-TSS can also
be directly applied to other applications, such as the detec-
tion of rare disease and local festival.

5.1 Experimental Design

5.1.1 Datasets:
1) Civil Unrest Dataset. We collect 22,728,052 tweets

(nearly ten percent of all the raw Twitter data of Argentina)
from April 1, 2013 to March 31, 2014. The civil unrest event
labels, called Golden Standard Report (GSR), were collect-
ed and confirmed from local newspaper that are accessible
from Internet. According to the geographical information of
Argentina, we construct a connected city-city network with
2057 nodes and 15832 edges.

2) Earthquake Dataset. We collect 5,548,926 tweets
of Chile from July 1, 2013 to June 30, 2014. The earth-
quake records were reported by United States Geological
Survey[31]. This institution weekly publishes earthquake re-
ports all over the world for scientific research. Similarly, we
also construct a connected city-city network with 897 nodes
and 4862 edges, based on the Chile geographical informa-
tion.

3) Influenza disease outbreak. We collect 27,592,005
tweets during April 1, 2014 to March 31, 2015 in the United
States. The influenza outbreaks event labels are reported
by the Centers for Disease Control and Prevention (CD-
C) [2]. The CDC weekly publishes the results related to
influenza-like illness (ILI) within each major region in the
United States. A connected network with 3042 nodes and
21094 edges is constructed as well.

In these three datasets, we use the first six months data
as training data, and use the rest data as testing data to
evaluate the performance of methods. Training data is used
to learn the topic-word distribution, normal area topic dis-
tribution and the criterion or threshold to raise an alert. We
assume that the historical training data is sufficient to iden-
tify all the potential topics, and an emerging spatial event
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Table 3: Comparison between Graph-TSS and Existing Methods on the Civil Unrest datasets

Method
Oct,2013 Nov,2013 Dec,2013 Jan,2014 Feb,2014 March,2014

FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

LGTA 0.073 0.23 0.075 0.226 0.066 0.192 0.066 0.115 0.065 0.13 0.068 0.20
STLocal 0.331 0.332 0.413 0.42 0.362 0.31 0.324 0.28 0.353 0.324 0.382 0.324

Graph-Laplacian 0.211 0.18 0.202 0.241 0.214 0.193 0.216 0.17 0.21 0.251 0.223 0.246
NPHGS 0.05 0.271 0.046 0.46 0.048 0.23 0.049 0.27 0.051 0.334 0.046 0.25

Event Tree 0.051 0.33 0.047 0.372 0.047 0.47 0.045 0.321 0.048 0.33 0.052 0.295
Graph-TSS 0.045 0.561 0.048 0.507 0.042 0.516 0.05 0.355 0.049 0.476 0.045 0.41

Table 4: Comparison between Graph-TSS and Existing Methods on the Chile Earthquake datasets

Method
Jan,2014 Feb,2014 March,2014 April,2014 May,2014 June,2014

FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

LGTA 0.118 0.228 0.116 0.202 0.126 0.195 0.134 0.202 0.099 0.216 0.10 0.192
STLocal 0.296 0.163 0.303 0.222 0.321 0.236 0.289 0.208 0.341 0.267 0.29 0.221

Graph-Laplacian 0.14 0.141 0.192 0.183 0.231 0.206 0.162 0.136 0.142 0.13 0.24 0.22
NPHGS 0.10 0.263 0.10 0.278 0.11 0.283 0.11 0.198 0.11 0.257 0.10 0.2

Event Tree 0.098 0.42 0.097 0.339 0.093 0.381 0.10 0.16 0.10 0.27 0.098 0.30
Graph-TSS 0.104 0.49 0.101 0.45 0.098 0.44 0.104 0.37 0.098 0.42 0.098 0.484

is characterized as a new topic distribution, instead of new
topics.

5.1.2 Data Preprocessing:
After we collected raw tweets, several preprocessing steps

were conducted for our proposed method and all the compar-
ison partners, including: 1) Tweet Geocoding: We imple-
mented a geocoding library for tweets based on three major
rules with priorities. For each tweet, we first searched for
location and landmark mentions in the tweet text, then for
geotags that are available if the user enabled the geocoding
function in his/her phone, and finally for location informa-
tion from the users profile. The first location information
identified was returned as the geographic location of this
tweet; 2) Vocabulary Generation: We first generated a
vocabulary of around 1000 terms related to civil unrests, a
vocabulary of around 300 terms related to earthquake, and
a vocabulary of around 200 terms related to influenza from
domain experts; 3) Stemming: Python library is used for
stemming and removing stop words; 4) Content Filter-
ing: Only the raw tweets that match more than two terms
from the vocabulary were preserved, in order to remove the
unrelated noise. We treat the unrelated tweets as noise and
use the topic distribution in normal region to characterize
the noise. This strategy is similar to the expected based
scan statistics, where the unrelated counts in nodes outside
the anomalous cluster are considered as noise and modeled
using a specific distribution.

5.1.3 Comparison Partners:
We compare our proposed Graph-TSS with five existing

representative methods, including Latent Geographical Top-
ic Analysis (LGTA) [33], STLocal [15], Graph-Laplacian[29],
NPHGS[5], EventTree[27]. We strictly followed strategies
recommended by authors in their papers to tune the related
model parameters. To make a fair comparison, the number
of connected components g is set as 1 in Graph-TSS. The
upper bound on the number of vertices s is set as 30 based
on the training data.

5.1.4 Performance Metrics:
To evaluate our models quantitatively, we employ the fol-

lowing metrics, namely, 1) false positive rate (FPR), 2) true
positive rate (TPR). For each method, the reported alerts
are structured as tuples of (date, location), where “location”
is defined at the city level (e.g. 2057 cities in Argentina, 897
cities in Chile, and 3042 in United States). For each Gold-
en Standard Report Event, United States Geological Survey
Event or Centers for Disease Control and Prevention Re-
ports, we decide whether the method had an alert in the
city within 7 days.

5.2 Event Detection Result
Table 3 demonstrates the comparison between the pro-

posed Graph-TSS and other competing methods for Argenti-
na civil unrest event detection in different months. In the
civil unrest event detection, we fix the false positive rates as
around 0.05 and show the best true positive rates results for
NPHGS, EventTree and Graph-TSS. For the other methods,
we use the optimal parameters papers and authors recom-
mended. According to Table 3, Graph-TSS achieved much
higher TPR than all competing methods, for comparable
false positive rates. For each month, the TPR of Graph-TSS
can outperform much more than the TPR of other methods.

Table 4 demonstrates the comparison between the pro-
posed Graph-TSS and other competing methods for Chile
earthquake event detection in different months, and table 5
demonstrates the comparison between the proposed Graph-
TSS and other competing methods for United States influen-
za outbreak detection in six months. The results indicate
consistent patterns as observed in Table 3. These two ta-
bles show that our proposed Graph-TSS performs the best
on both Chile earthquake and United States influenza out-
break data sets in the six months.

We note that the true positive rates of all tested method-
s were lower than 55%, perhaps because some GSR events
or other events did not produce strong signals in the noisy
Twitter data, or because an alert was only considered “cor-
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Table 5: Comparison between Graph-TSS and Existing Methods on the Influenza disease outbreak datasets

Method
Jan,2014 Feb,2014 March,2014 April,2014 May,2014 June,2014

FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

LGTA 0.128 0.217 0.113 0.223 0.136 0.197 0.137 0.199 0.102 0.204 0.111 0.212
STLocal 0.316 0.203 0.283 0.212 0.291 0.219 0.319 0.228 0.323 0.234 0.301 0.216

Graph-Laplacian 0.152 0.191 0.178 0.213 0.221 0.236 0.183 0.186 0.17 0.17 0.22 0.2
NPHGS 0.10 0.313 0.10 0.298 0.11 0.353 0.11 0.338 0.11 0.347 0.10 0.29

Event Tree 0.099 0.34 0.098 0.333 0.097 0.29 0.10 0.31 0.10 0.34 0.10 0.36
Graph-TSS 0.101 0.43 0.102 0.38 0.100 0.41 0.099 0.37 0.099 0.36 0.099 0.41
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Figure 4: TPR in various false positive rates

rect” if it matched both the date and location of a labeled
event.

Figure 4 shows the true positive rate results at various
false positive rates on the Argentina civil unrest dataset,
Chile earthquake dataset and Uunted States influenza out-
break dataset. We averaged over the results of the six month-
s. With increasing value of FPR, the TPR increases and
then plateaus. We observe that Graph-TSS consistently out-
perform the comparison partners for different FPR levels.
Compared to the most competitive state of the art method,
Graph-TSS improves the TPR by 22%(Argentina civil un-
rest), 42%(Chile earthquake), and 18% (United States In-
fluenza outbreak) in 10% FPR level, respectively. The re-
sults confirm our idea that the latent semantics of textual
information in social media can contribute to the spatial
event detection.

5.3 Runtime Result
The run time of our proposed method consists of two part-

s: latent semantics of textual information learning and sub-
graph detection. As shown in Table 6, Table 7 and Table 8,
run times of Graph-TSS are comparable to baselines meth-
ods on Argentina civil unrest, Chile earthquake, and Unit-
ed States influenza outbreak data sets. It is only slightly
higher than NPHGS on civil unrest and influenza outbreak
data sets, because NPHGS is a greedy method, rather than
an approximation algorithm. Our approximation algorithm
Graph-IHT can detect the sub-graph in nearly-linear time
O(|E| log3 |V|).

6. CONCLUSION
This paper presents the Graph Topic Scan Statistic for s-

patial event detection by using textual information in social
media. Because the spatial event detection under Graph-
TSS is NP-hard, this paper also designs an efficient approx-

Table 6: Run times results on Civil Unrest datasets
Method LGTA STLocal Graph Laplacian

Time (Mins) 141.4 135.1 284.4

Method NPHGS Event Tree Graph-TSS
Time (Mins) 35.8 69.8 45.5

Table 7: Run times results on Chile Earthquake
datasets

Method LGTA STLocal Graph Laplacian
Time (Mins) 108.4 95.3 204.2

Method NPHGS Event Tree Graph-TSS
Time (Mins) 24.8 35.87 17.16

imation algorithm to efficiently maximize the Graph-TSS
over connected sub-graphs to identify the most anomalous
region. This work performs experiments on real Twitter da-
ta. The empirical results demonstrate that Graph-TSS can
effectively detect Argentina civil unrest events, Chile earth-
quake outbreak events, and United States influenza events,
outperforming the competing methods. For future work,
we will extend our work to heterogeneous graphs to detect
event regions. In addition, we plan to extend a Bayesian
framework such that rich domain knowledge can be natural-
ly integrated.
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