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Abstract

Sparsity-constrained optimization is an important and challenging problem that has wide applicability in
data mining, machine learning, and statistics. In this paper, we focus on sparsity-constrained optimization
in cases where the cost function is a general nonlinear function and, in particular, the sparsity constraint is
defined by agraph-structured sparsity model. Existing methods explore this problem in the contextof
sparse estimation in linear models. To the best of our knowledge, this is the first work to present an efficient
approximation algorithm, namely, GRAPH-structured Matching Pursuit (GRAPH-MP), to optimize a general
nonlinear function subject to graph-structured constraints. We prove that our algorithm enjoys the strong
guarantees analogous to those designed for linear models interms of convergence rate and approximation
accuracy. As a case study, we specialize GRAPH-MP to optimize a number of well-known graph scan
statistic models for the connected subgraph detection task, and empirical evidence demonstrates that our
general algorithm performs superior over state-of-the-art methods that are designed specifically for the task
of connected subgraph detection.

1 Introduction
In recent years, that is a growing demand on efficient computational methods for analyzing high-dimensional data
in a variety of applications such as bioinformatics, medical imaging, social networks, and astronomy. In many set-
tings, sparsity has been shown effective to model latent structure in high-dimensional data and at the same time
remain a mathematically tractable concept. Beyond the ordinary, extensively studied, sparsity model, a variety
of structured sparsity models have been proposed in the literature, such as the sparsity models defined through
trees[Hegdeet al., 2014b], groups[Jacobet al., 2009], clusters[Huanget al., 2011], paths[Asteriset al., 2015], and
connected subgraphs[Hegdeet al., 2015b]. These sparsity models are designed to capture the interdependence of
the locations of the non-zero components via prior knowledge, and are considered in the general sparsity-constrained
optimization problem:

min
x∈Rn

f(x) s.t. supp(x) ∈ M, (1)

wheref : Rn → R is a differentiable cost function and the sparsity modelM is defined as a family of structured
supports:M = {S1, S2, · · · , SL}, whereSi ⊆ [n] satisfies a certain structure property (e.g., trees, groups, clusters).
The originalk-sparse recovery problem corresponds to the particular case where the modelM = {S ⊆ [n] | |S| ≤ k}.

The methods that focus on general nonlinear cost functions fall into two major categories, includingstruc-
tured sparsity-inducing norms basedand model-projection based, both of which often assume that the cost
function f(x) satisfies a certain convexity/smoothness condition, such as Restricted Strong Convexity/Smoothness
(RSC/RSS) orStable Mode-Restricted Hessian(SMRH). In particular, the methods in the first category replace the
structured sparsity model with regularizations by a sparsity-inducing norm that is typically non-smooth and non-
Euclidean[Bachet al., 2012]. The methods in the second category decompose Problem (1) into an unconstrained
subproblem and a model projection oracle that finds the best approximation of an arbitraryx in the modelM:

P(x) = arg min
x′∈Rn

‖x− x′‖22 s.t. supp(x′) ∈ M.

A number of methods are proposed specifically for the k-sparsity modelM = {S ⊆ [n] | |S| ≤ k}, including the
forward-backward algorithm[Zhang, 2009], the gradient descent algorithm[Tewariet al., 2011], the gradient hard-
thresholding algorithms[Yuanet al., 2013; Bahmaniet al., 2013; Jainet al., 2014], and the Newton greedy pursuit
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algorithm[Yuan and Liu, 2014]. A limited number of methods are proposed for other types of structured sparsity
models via projected gradient descent, such as the union of subspaces[Blumensath, 2013] and the union of nested
subsets[Bahmaniet al., 2016].

In this paper, we focus on general nonlinear optimization subject to graph-structured sparsity constraints. Our
approach applies to data with an underlying graph structurein which nodes corresponding to supp(x) form a small
number of connected components. By a proper choice of the underlying graph, several other structured sparsity models
such as the “standard”k-sparsity, block sparsity, cluster sparsity, and tree sparsity can be encoded as special cases of
graph-structured sparsity[Hegdeet al., 2015a].

We have two key observations: 1)Sparsity-inducing norms. There is no known sparsity-inducing norm that is
able to capture graph-structured sparsity. The most relevant norm is generalized fused lasso[Xin et al., 2014] that
enforces the smoothness between neighboring entries inx, but does not have fine-grained control over the number
of connected components. Hence, existing methods based on sparsity-inducing norms are not directly applicable to
the problem to be optimized. 2)Model projection oracle. There is no exact model projection oracle for a graph-
structured sparsity model, as this exact projection problem is NP-hard due to a reduction from the classical Steiner tree
problem[Hegdeet al., 2015b]. As most existing model-projection based methods assume anexact model projection
oracle, they are not directly applicable here as well. To thebest of our knowledge, there is only one recent approach
that admits inexact projections for a graph-structured sparsity model by assuming “head” and “tail” approximations for
the projections, but is only applicable to linear regression problems[Hegdeet al., 2015b]. This paper will generalize
this approach to optimize general nonlinear functions. Themain contributions of our study are summarized as follows:

• Design of an efficient approximation algorithm.A new and efficient algorithm, namely, GRAPH-MP, is devel-
oped to approximately solve Problem (1) with a differentiable cost function and a graph-structured sparsity model.
We show that GRAPH-MP reduces to a state-of-the-art algorithm for graph-structured compressive sensing and
linear models, namely, GRAPH-COSAMP, whenf(x) is a least square loss function.

• Theoretical analysis and connections to existing methods.The convergence rate and accuracy of the proposed
GRAPH-MP are analyzed under a condition off(x) that is weaker than popular conditions such as RSC/RSS
and SMRH. We demonstrate that GRAPH-MP enjoy strong guarantees analogous to GRAPH-COSAMP on both
convergence rate and accuracy.

• Compressive experiments to validate the effectiveness andefficiency of the proposed techniques.The pro-
posed GRAPH-MP is applied to optimize a variety of graph scan statistic models for the task of connected sub-
graph detection. Extensive experiments demonstrate that GRAPH-MP performs superior over state-of-the-art
methods that are customized for the task of connected subgraph detection on both running time and accuracy.

The rest of this paper is organized as follows. Section 2 introduces the graph-structured sparsity model. Section 3
formalizes the problem and presents an efficient algorithm GRAPH-MP. Sections 4 and 5 present theoretical analysis.
Section 6 gives the applications of GRAPH-MP. Experiments are presented in Section 7, and Section 8 describes future
work.

2 Graph-Structured Sparsity Model
Given an underlying graphG = (V,E) defined on the coefficients of the unknown vectorx, whereV = [n] and
E ⊆ V× V, a graph-structured sparsity model has the form:

M(k, g) = {S ⊆ V | |S| ≤ k, γ(S) = g}, (2)

wherek refers to an upper bound of the sparsity (total number of nodes) ofS andγ(S) = g refers to the maximum
number of connected components formed by the forest inducedby S: GS = (S,ES), whereES = {(i, j) | i, j ∈
S, (i, j) ∈ E}. The corresponding model projection oracle is defined as

P(x) = arg min
x′∈Rn

‖x− x′‖22 s.t. supp(x′) ∈ M(k, g). (3)

Solving Problem (3) exactly is NP-hard due to a reduction from the classical Steiner tree problem. Instead of solv-
ing (3) exactly, two nearly-linear time approximation algorithms with the following complementary approximation
guarantees are proposed in[Hegdeet al., 2015b]:
• Tail approximation (T(x)): FindS ∈ M(kT , g) such that

‖x− xS‖2 ≤ cT · min
S′∈M(k,g)

‖x− xS′‖2, (4)

wherecT =
√
7 andkT = 5k.

• Head approximation (H(x)): FindS ∈ M(kH , g) such that

‖xS‖2 ≥ cH · max
S′∈M(k,g)

‖xS′‖2, (5)

wherecH =
√

1/14 andkH = 2k.
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If cT = cH = 1, then T(x) = H(x) = S provides the exact solution of the model projection oracle:P(x) = xS , which
indicates that the approximations stem from the fact thatcT > 1 andcH < 1. We note that these two approximations
originally involve additional budgets (B) based on edge weights, which are ignored in this paper by setting unit edge
weights andB = k − g.
Generalization: The above graph-structured sparsity model is defined based on the number of connected components
in the forest induced byS. This model can be generalized to graph-structured sparsity models that are defined based on
other graph topology constraints, such as density, k-core,radius, cut, and various others, as long as their corresponding
head and tail approximations are available.

3 Problem Statement and Algorithm
Given the graph-structured sparsity model,M(k, g), as defined above, the sparsity-constrained optimization problem
to be studied is formulated as:

min
x∈Rn

f(x) s.t. supp(x) ∈ M(k, g), (6)

wheref : Rn → R is a differentiable cost function, and the upper bound of sparsity k and the maximum number of
connected componentsg are predefined by users.

Hegde et al. propose GRAPH-COSAMP, a variant of COSAMP [Hegdeet al., 2015b] to optimize the least square
cost functionf(x) = ‖y−Ax‖22 based on the head and tail approximations. The authors show that GRAPH-COSAMP
achieves an information-theoretically optimal sample complexity for a wide range of parameters. In this paper, we
genearlize GRAPH-COSAMP and propose a new algorighm named as GRAPH-MP for Problem (6), as shown in Al-
gorithm 1. The first step (Line 3) in each iteration,g = ∇f(xi), evaluates the gradient of the cost function at the
current estimate. Then a subset of nodes are identified via head approximation,Γ = H(g), that returns a support set
with head value at least a constant fraction of the optimal head value, in which pursuing the minimization will be most
effective. This subset is then merged with the support of thecurrent estimate to obtain the merged subsetΩ, over
which the function f is minimized to produce an intermediateestimate,b = argminx∈Rn f(x) s.t. xΩc = 0. Then
a subset of nodes are identified via tail approximation,B = T(b), that returns a support set with tail value at most a
constant times larger than the optimal tail value. The iterations terminate when the halting condition holds. There are
two popular options to define the halting condition: 1) the change of the cost function from the previous iteration is
less than a threshold (|f(xi+1)−f(xi)| ≤ ǫ); and 2) the change of the estimated minimum from the previous iteration
is less than a threshold (‖xi+1 − xi‖2 ≤ ǫ), whereǫ is a predefined threshold (e.g.,ǫ = 0.001).

Algorithm 1 GRAPH-MP

1: i = 0, xi = 0;
2: repeat
3: g = ∇f(xi);
4: Γ = H(g);
5: Ω = Γ ∪ supp(xi)
6: b = argminx∈Rn f(x) s.t. xΩc = 0
7: B = T(b);
8: xi+1 = bB

9: until halting condition holds
10: return xi+1

4 Theoretical Analysis of GRAPH-M P under SRL condition
In this section, we give the definition of Stable Restricted Linearization (SRL)[Bahmaniet al., 2013] and we show
that our GRAPH-MP algorithm enjoys a theorectial approximation guarantee under this SRL condition.

Definition 1 (Restricted Bregman Divergence[Bahmaniet al., 2013]). We denote the restricted Bregman divergence

of f asBf

(

· ‖ ·
)

. The restricted Bregman divergence off : Rp → R between pointsx andy is defined as

Bf

(

x‖y
)

= f(x)− f(y)− 〈∇f (y),x − y〉, (7)

where∇f (y) gives a restricted subgradient off . We say vector∇f(x) is a restricted subgradient off : Rp → R at
pointx if

f(x+ y)− f(x) ≥ 〈∇f(x),y〉 (8)

holds for allk-sparse vectorsy.
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Definition 2 (Stable Restricted Linearization (SRL)[Bahmaniet al., 2013]). Let x be ak-sparse vector inRp. For
functionf : Rp → R we define the functions

αk(x) = sup

{

1

‖y‖22
Bf (x+ y‖x)

∣

∣

∣
y 6= 0 and|supp(x) ∪ supp(y)| ≤ k

}

(9)

and

βk(x) = inf

{

1

‖y‖22
Bf (x+ y|x)

∣

∣

∣
y 6= 0 and|supp(x) ∪ supp(y)| ≤ k

}

(10)

Thenf(·) is said to have a Stable Restricted Linearization with constantµk, or µk-SRL if αk(x)
βk(x)

≤ µk

Lemma 4.1. Denote∆ = x1 − x2,∆
′ = ∇f(x1) − ∇f(x2), and letr ≥ |supp(x1) ∪ supp(x2)|, ᾱl(x1,x2) =

αl(x1) + αl(x2), β̄l(x1,x2) = βl(x1) + βl(x2), γ̄l(x1,x2) = ᾱl(x1,x2) − β̄l(x1,x2). For anyR′ ⊆ R =
supp(x1 − x2), we have

‖∆′
R′‖ ≤ ᾱr‖∆R′‖2 + γ̄r‖∆‖2 (11)

‖∆′
R′‖ ≥ β̄r‖∆R′‖2 − γ̄r‖∆R\R′‖2 (12)

Proof. We can get the following properties
∣

∣

∣
ᾱr‖∆R′‖22 − 〈∆′,∆R′〉

∣

∣

∣
≤ γ̄r‖∆R′‖2‖∆‖2 (13)

∣

∣

∣
‖∆′

R′‖22 − ᾱr〈∆′,∆R′〉
∣

∣

∣
≤ γ̄r‖∆′

R′‖2‖∆‖2 (14)

from [Bahmaniet al., 2013], whereR′ be a subset ofR = supp(∆). It follows from (13) and (14) that

‖∆′
R′‖22 − ᾱ2

r‖∆R′‖22 = ‖∆′
R′‖22 − ᾱr〈∆′,∆R′〉+ ᾱr

[

− ᾱr‖∆R′‖22 + 〈∆′,∆R′〉
]

≤ γ̄r‖∆′
R′‖2‖∆‖2 + ᾱrγ̄r‖∆R′‖2‖∆‖2.

It can be reformulated as the following

‖∆′
R′‖22 − γ̄r‖∆′

R′‖2‖∆‖2 ≤ ᾱ2
r‖∆R′‖22 + ᾱrγ̄r‖∆R′‖2‖∆‖2

‖∆′
R′‖22 − γ̄r‖∆′

R′‖2‖∆‖2 +
1

4
γ̄2
r‖∆‖22 ≤ ᾱ2

r‖∆R′‖22 + ᾱrγ̄r‖∆R′‖2‖∆‖2 +
1

4
γ̄2
r‖∆‖22

(‖∆′
R′‖2 −

1

2
γ̄r‖∆‖2)2 ≤ (ᾱr‖∆R′‖2 +

1

2
γ̄r‖∆‖2)2 (15)

Hence, we have‖∆′
R′‖2 ≤ ᾱr‖∆R′‖2 + γ̄r‖∆‖2. We directly get (12) from[Bahmaniet al., 2013].

Theorem 4.2. Suppose thatf satisfiesµ8k-SRL withµ8k ≤ 1 +
√

1
56 . Furthermore, suppose forβ8k in Definition 2

exists someǫ > 0 such thatβ8k ≥ ǫ holds for all8k-sparse vectorsx. Thenxi+1, the estimate at thei+1-th iteration,
satisfies. for any truex ∈ Rn with supp(x) ∈ M(k, g), the iterates of Algorithm 1 must obey

‖ri+1‖ ≤ σ‖ri‖+ ν‖∇If(x)‖2, (16)

whereσ =

√

µ2
8k −

(

2 + cH − 2µ8k

)2

andν = (2+cH−2µ8k)(1+cH)+σ

2ǫσ .

Proof. Let ri+1 = xi+1 − x. ‖ri+1‖2 is upper bounded as

‖ri+1‖2 = ‖xi+1 − x‖2 ≤ ‖xi+1 − b‖2 + ‖x− b‖2
≤ cT ‖x− b‖2 + ‖x− b‖2
= (1 + cT )‖x− b‖2.

The first inequality above follows by the triangle inequality and the second inequality follows by tail approximation.
SinceΩ = Γ ∪ supp(xi) andb = argminx∈Rn f(x) s.t. xΩc = 0, we have

‖x− b‖2 ≤ ‖(x− b)Ωc‖2 + ‖(x− b)Ω‖2
= ‖xΩc‖2 + ‖(x− b)Ω‖2
= ‖(x− xi)Ωc‖2 + ‖(x− b)Ω‖2
= ‖riΩc‖2 + ‖(x− b)Ω‖2
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Sinceb satisfiesb = argminx∈Rn f(x) s.t. xΩc = 0, we must have∇f(b)|Ω = 0. Then it follows from Corollary
2 in [Bahmaniet al., 2013],

‖(∇f(x)−∇f(b))Ω‖2 ≥ β̄6k‖(x− b)Ω‖2 − γ̄6k‖(x− b)Ωc‖2
‖∇Ωf(x)‖2 ≥ β̄6k‖(x− b)Ω‖2 − γ̄6k‖(x− b)Ωc‖2
‖∇Ωf(x)‖2 ≥ β̄6k‖(x− b)Ω‖2 − γ̄6k‖(x− xi)Ωc‖2,

whereᾱ6k(x1,x2) = α6k(x1) + α6k(x2), β̄6k(x1,x2) = β6k(x1) + β6k(x2) and γ̄6k(x1,x2) = ᾱ6k(x1,x2) −
β̄6k(x1,x2). As |supp(x− b)| ≤ 6k, we have6k-sparsity by Definition (2). Note thatΩ ∩ R is a subset ofR and
‖(∇f(x)−∇f(b))Ω‖2 ≥ ‖(∇f(x)−∇f(b))Ω∩R‖2. Similarly, we have(x− b)Ω = (x− b)Ω∩R and(x− b)Ωc =
(x− b)R\(Ω∩R). The second inequality follows by∇Ωf(b) = 0, and the third inequality follows bybΩc = 0 and
xi
Ωc = 0. Therefore,‖x− b‖2 can be further upper bounded as

‖x− b‖2 ≤ ‖riΩc‖2 + ‖(x− b)Ω‖2

≤ ‖riΩc‖2 +
γ̄6k‖(x− xi)Ωc‖2

β̄6k
+

‖∇f(x)Ω‖2
β̄6k

=
[

1 +
γ̄6k

β̄6k

]

‖riΩc‖2 +
‖∇f(x)Ω‖2

β̄6k
(17)

Let R = supp(xi − x) andΓ = H(∇f(xi)) ∈ M+ = {H ∪ T |H ∈ M(kH , g), T ∈ M(kT , g)}. We notice that
R ∈ M+. The component‖∇Γf(x

i)‖2 can be lower bounded as

‖∇Γf(x
i)‖2 ≥ cH‖∇Rf(x

i)‖2
≥ cH‖∇Rf(x

i)−∇Rf(x)‖2 − cH‖∇Rf(x)‖2
≥ cH β̄6k‖xi − x‖2 − cH‖∇If(x)‖2
= cH β̄6k‖ri‖2 − cH‖∇If(x)‖2 (18)

The first inequality follows the head approximation andR ∈ M+. The second one is from triangle inequality and the
third one follows by Lemma (4.1). The component‖∇Γf(x

i)‖2 can also be upper bounded as

‖∇Γf(x
i)‖2 ≤ ‖∇Γf(x

i)−∇Γf(x)‖2 + ‖∇Γf(x)‖2
≤ ‖∇Γ\Rcf(xi)−∇Γ\Rcf(x) +∇Γ∩Rcf(xi)−∇Γ∩Rcf(x)‖2 + ‖∇Γf(x)‖2
≤ ‖∇Γ\Rcf(xi)−∇Γ\Rcf(x)‖2 + ‖∇Γ∩Rcf(xi)−∇Γ∩Rcf(x)‖2 + ‖∇Γf(x)‖2
≤ ‖∇Γ\Rcf(xi)−∇Γ\Rcf(x)‖2 + γ̄8k‖ri‖2 + ‖∇Γf(x)‖2
≤ ᾱ6k‖riΓ\Rc‖2 + γ̄6k‖ri‖2 + γ̄8k‖ri‖2 + ‖∇If(x)‖2 (19)

The first and third inequalities follow by the triangle inequality. The second inequality follows byΓ = (Γ ∩ Rc) ∪
(Γ\Rc). And the last inequality follows by‖(f(xi)−f(x))R′‖2 ≤ γ̄k+r‖xi−x‖2, wherek ≤ |R′|, r = |supp(xi−x)|
andR′ ⊆ Rc. By Lemma (4.1), we have‖∇Γ\Rcf(xi) − ∇Γ\Rcf(x)‖2 ≤ ᾱ6k‖riΓ\Rc‖2 + γ̄6k‖ri‖2. Combining
Equation (18) and Equation (19), we have

cH β̄6k‖ri‖2 − cH‖∇If(x)‖2 ≤ ᾱ6k‖riΓ\Rc‖2 + γ̄6k‖ri‖2 + γ̄8k‖ri‖2 + ‖∇If(x)‖2
cH β̄3k‖ri‖2 − cH‖∇If(x)‖2 ≤ ᾱ6k‖riΓ‖2 + γ̄6k‖ri‖2 + γ̄8k‖ri‖2 + ‖∇If(x)‖2

(cH β̄3k − γ̄6k − γ̄8k)‖ri‖2 − (1 + cH)‖∇If(x)‖2 ≤ ᾱ6k‖riΓ‖2
µ8k‖riΓ‖2 ≥ (cH + 2− 2µ8k)‖ri‖2 −

1 + cH
2ǫ

‖∇If(x)‖2

Finally, we get‖riΓ‖ ≥
(

2+cH
µ8k

− 2
)

‖ri‖ − 1+cH
2ǫµ8k

‖∇If(x)‖. Let us assume the SRL parameterµ8k ≤ 2+cH
2 . Using

the same computing procedure of Lemma 9 in[Hedge, 2015], we have

‖riΓc‖2 ≤ η‖ri‖+ (2 + cH − 2µ8k)(1 + cH)

2ǫµ2
8kη

‖∇If(x)‖2, (20)
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whereη =
√

1− (2+cH
µ8k

− 2)2. Combine them together, we have

‖x− b‖2 ≤
(

1 +
γ̄6k

β̄6k

)

‖riΩc‖2 +
‖∇f(x)Ω‖2

β̄6k

≤ µ8k‖riΩc‖2 +
‖∇f(x)Ω‖2

β̄6k

≤ µ8k‖riΓc‖2 +
‖∇f(x)Ω‖2

2ǫ

≤ σ‖ri‖+ ν‖∇If(x)‖2, (21)

whereσ =

√

µ2
8k −

(

2 + cH − 2µ8k

)2

andν = (2+cH−2µ8k)(1+cH)+σ

2ǫσ . Hence, we prove this theorem.

Theorem 4.3. Let the true parameter bex ∈ Rn such that supp(x) ∈ M(k, g), andf : Rn → R be cost function
that satisfies SRL condition. TheGRAPH-MP algorithm returns âx such that, supp(x̂) ∈ M(5k, g) and‖x− x̂‖2 ≤
c‖∇If(x)‖2, wherec = (1 + ν

1−σ
) and I = argmaxS∈M(8k,g) ‖∇Sf(x)‖2. The parametersσ and ν are fixed

constants defined in Theorem 4.2. Moreover,GRAPH-MP runs in time

O
(

(T + |E| log3 n) log(‖x‖2/‖∇If(x)‖2)
)

, (22)

whereT is the time complexity of one execution of the subproblem in Step 6 inGRAPH-MP. In particular, if T scales
linearly withn, thenGRAPH-MP scales nearly linearly withn.

Proof. The i-th iterate of GRAPH-MP satisfies

‖x− x
i‖2 ≤ σ

i‖x‖2 +
ν

1− σ
‖∇If(x)‖2. (23)

After t =
⌈

log
(

‖x‖2

‖∇If(x)‖2

)

/ log 1
σ

⌉

iterations, GRAPH-MP returns an estimatêx satisfying‖x − x̂‖2 ≤ (1 +

ν
1−σ

)‖∇If(x)‖2 asσ < 1 and the summation of
∑i

k=0 νσ
k = ν(1−σi)

1−σ
≤ ν

1−σ
. The time complexities of both head

approximation and tail approximation areO(|E| log3 n). The time complexity of one iteration in GRAPH-MP is (T +

|E| log3 n), and the total number of iterations is
⌈

log
(

‖x‖2

‖∇If(x)‖2

)

/ log 1
α

⌉

, and hence the overall time follows.

5 Theoretical Analysis of GRAPH-M P under RSC/RSS condition
Definition 3 (Restricted Strong Convexity/Smoothness, (mk,Mk,M)-RSC/RSS). [Yuanet al., 2013] . For any integer
k > 0, we sayf(x) is restrictedmk-strongly convex andMk-strongly smooth of there exist∃mk, Mk > 0 such that

mk

2
‖x− y‖22 ≤ f(x)− f(y)− 〈∇f(y),x − y〉 ≤ Mk

2
‖x− y‖22, ∀‖x− y‖0 ≤ k (24)

Lemma 5.1. LetS be any index set with cardinality|S| ≤ k andS ∈ M(k, g). If f is (mk,Mk,M)-RSC/RSS, then
f satisfies the following property

‖x− y − mk

M2
k

(

∇Sf(x)−∇Sf(y)
)

‖2 ≤
√

1− (
mk

Mk

)2‖x− y‖2 (25)

Proof. By adding two copies of the inequality (3) withx andy, we have

mk‖x− y‖22 ≤ 〈∇f(x) −∇f(y),x − y〉 ≤ Mk‖x− y‖22, ∀‖x− y‖0 ≤ k. (26)

By Theorem 2.1.5 in[Nesterov, 2013], we have〈∇f(x)−∇f(y),x − y〉 ≥ 1
L
‖∇f(x)−∇f(y)‖22, which means

‖∇Sf(x)−∇Sf(y)‖22 ≤ ‖∇f(x)−∇f(y)‖22 ≤ MkL‖x− y‖22. (27)

LetL = Mk and then‖∇Sf(x)−∇Sf(y)‖2 ≤ Mk‖x− y‖2. The left side of inequality (26) is

mk‖x− y‖22 ≤ 〈∇f(x)−∇f(y),x − y〉 = (x− y)T (∇Sf(x)−∇Sf(y)). (28)

The last equation of ( 28) follows byx− y = (x − y)S . For anya andb, we have‖a−b‖22 = ‖a‖22+ ‖b‖22− 2aTb.

By replacinga as(x − y) andb as mk

M2

k

(

∇Sf(x)−∇Sf(y)
)

, we have
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‖x− y − mk

M2
k

(

∇Sf(x)−∇Sf(y)
)

‖22 = ‖x− y‖22 +
m2

k

M4
k

‖∇Sf(x)−∇Sf(y)‖22 (29)

− 2mk

M2
k

(x− y)T (∇Sf(x)−∇Sf(y))

≤ (1 +
m2

k

M2
k

− 2m2
k

M2
k

)‖x− y‖22

= (1− m2
k

M2
k

)‖x− y‖22. (30)

By taking the square root for both sides of (30), we can prove the result. If one follows Lemma 1 in[Yuanet al., 2013]

by replacingδ as mk

M2

k

andρs as
√

1− (mk

Mk

)2, one can also get same result.

Theorem 5.2. Consider the graph-structured sparsity modelM(k, g) for somek, g ∈ N and a cost functionf : Rn →
R that satisfies condition(mk,Mk,M(8k, g))-RSC/RSS. Ifα0 = cH −

√

1−
m2

k

M2

k

· (1 + cH), then for any truex ∈ Rn

with supp(x) ∈ M(k, g), the iterates of Algorithm 1 obey

‖xi+1 − x‖2 ≤
Mk(1 + cT )

√

1− α2
0

Mk −
√

M2
k −m2

k

· ‖xi − x‖2 +
mk(1 + cT )

M2
k −Mk

√

M2
k −m2

k

(1 + cH + α0

α0
+

α0(1 + cH)
√

1− α2
0

)

‖∇If(x)‖2,

whereI = argmaxS∈M(8k,g) ‖∇Sf(x)‖2

Proof. Let ri+1 = xi+1 − x. ‖ri+1‖2 is upper bounded as

‖ri+1‖ = ‖xi+1 − x‖2 ≤ ‖xi+1 − b‖2 + ‖x− b‖2

≤ cT ‖x− b‖2 + ‖x− b‖2

≤ (1 + cT )‖x− b‖2,

which follows from the definition of tail approximation. Thecomponent‖(x− b)Ω‖22 is upper bounded as

‖(x− b)Ω‖
2
2 = 〈b− x, (b− x)Ω〉

= 〈b− x−
mk

M2
k

∇Ωf(b) +
mk

M2
k

∇Ωf(x), (b− x)Ω〉 − 〈
mk

M2
k

∇Ωf(x), (b− x)Ω〉

≤

√

1−
m2

k

M2
k

‖b− x‖2 · ‖(b− x)Ω‖2 +
mk

M2
k

‖∇Ωf(x)‖2 · ‖(b− x)Ω‖2,

where the second equality follows from the fact that∇Ωf(b) = 0 sinceb is the solution to the problem in Step 6 of
Algorithm 1, and the last inequality follows from Lemma 5.1.After simplification, we have

‖(x− b)Ω‖2 ≤
√

1− m2
k

M2
k

‖b− x‖2 +
mk

M2
k

‖∇Ωf(x)‖2

It follows that

‖x− b‖2 ≤ ‖(x− b)Ω‖2 + ‖(x− b)Ωc‖2 ≤

√

1−
m2

k

M2
k

‖b− x‖2 +
mk

M2
k

‖∇Ωf(x)‖2 + ‖(x− b)Ωc‖2

After rearrangement we obtain

‖b− x‖2 ≤
Mk

Mk −
√

M2
k −m2

k

(

‖(b− x)Ωc‖2 +
mk

M2
k

‖∇Ωf(x)‖2
)

=
Mk

Mk −
√

M2
k −m2

k

(

‖xΩc‖2 +
mk

M2
k

‖∇Ωf(x)‖2
)

=
Mk

Mk −
√

M2
k −m2

k

(

‖(x− x
i)Ωc‖2 +

mk

M2
k

‖∇Ωf(x)‖2
)

=
Mk

Mk −
√

M2
k −m2

k

(

‖rΩc‖2 +
mk

M2
k

‖∇Ωf(x)‖2
)

≤
Mk

Mk −
√

M2
k −m2

k

(

‖riΓc‖2 +
mk

M2
k

‖∇Ωf(x)‖2
)
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where the first equality follows from the fact that supp(b) ⊆ Ω, the second and last inequalities follow from the fact
thatΩ = Γ ∪ supp(xi). Combining above inequalities, we obtain

‖ri+1‖2 ≤
Mk(1 + cT )

Mk −
√

M2
k −m2

k

(

‖riΓc‖2 +
mk

M2
k

‖∇If(x)‖2
)

From Lemma 5.3, we have

‖riΓc‖2 ≤
√

1− α2
0‖r

i‖2 +

[

β0

α0
+

α0β0
√

1− α2
0

]

‖∇If(x)‖2 (31)

Combining the above inequalities, we prove the theorem.

Lemma 5.3. Letri = xi − x andΓ = H(∇f(xi)). Then

‖riΓc‖2 ≤
√

1− α2
0‖r

i‖2 +

[

β0

α0
+

α0β0
√

1− α2
0

]

‖∇If(x)‖2 (32)

,whereα0 = cH −

√

1−
m2

k

M2

k

· (1 + cH), andβ0 = mk(1+cH )

M2

k

, and I = argmaxS∈M(8k,g) ‖∇Sf(x)‖2. We assume that

cH and
√

1− m2
s

M2
s

are such thatα0 > 0.

Proof. DenoteΦ = supp(x) ∈ M(k, g),Γ = H(∇f(xi)) ∈ M(2k, g), ri = xi − x, andΩ = supp(ri) ∈ M(6k, g).
The component‖∇Γf(x

i)‖2 can be lower bounded as

‖∇Γf(x
i)‖2 ≥ cH(‖∇Φf(x

i)−∇Φf(x)‖2 − ‖∇Φf(x)‖2)

≥ cH
M2

2 −Mk

√

M2
k −m2

k

mk

‖ri‖2 − cH‖∇If(x)‖2,

where the last inequality follows from Lemma 6.1. The component‖∇Γf(x
i)‖2 can also be upper bounded as

‖∇Γf(x
i)‖2 ≤

M2
k

mk

‖
mk

M2
k

∇Γf(x
i)−

mk

M2
k

∇Γf(x)‖2 + ‖∇Γf(x)‖2

≤
M2

k

mk

‖
mk

M2
k

∇Γf(x
i)−

mk

M2
k

∇Γf(x)− r
i
Γ + r

i
Γ‖2 + ‖∇Γf(x)‖2

≤
M2

k

mk

‖
mk

M2
k

∇Γ∪Ωf(x
i)−

mk

M2
k

∇Γ∪Ωf(x)− r
i
Γ∪Ω‖2 +

M2
k

mk

‖riΓ‖2 + ‖∇Γf(x)‖2

≤
Mk

√

M2
k −m2

k

mk

· ‖ri‖2 +
M2

k

mk

‖riΓ‖2 + ‖∇If(x)‖2,

where the last inequality follows from condition(ξ, δ,M(8k, g))-RSC/RSS and the fact thatriΓ∪Ω = ri. Combining
the two bounds and grouping terms, we have

‖riΓ‖2 ≥ α0 · ‖ri‖2 − β0 · ‖∇If(x)‖2 (33)

,whereα0 =
[

cH −
√

1− m2

k

M2

k

· (1 + cH)
]

andβ0 = mk(1+cH)
M2

k

. We assume that the constantδ =

√

1− m2

k

M2

k

is small

enough such thatcH > δ
1−δ

. We consider two cases.
Case 1: The value of‖ri‖2 satisfiesα0‖ri‖2 ≤ β0‖∇f(x)‖2. Then consider the vectorriΓc . We have

‖riΓc‖2 ≤ β0

α0
‖ri‖2

Case 2: The value of‖ri‖2 satisfiesα0‖ri‖2 ≥ β0‖∇f(x)‖2. We get

‖riΓ‖2 ≥ ‖ri‖2
(

α0 −
β0‖∇If(x)‖2

‖ri‖2

)

Moreover, we also have‖ri‖2 = ‖riΓ‖22 + ‖riΓc‖2. Therefore, we obtain

‖riΓc‖2 ≤ ‖ri‖2

√

1−
(

α0 −
β0‖∇If(x)‖2

‖ri‖2

)2

.
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We have the following inequality, for a given0 < ω0 < 1 and a free parameter0 < ω < 1, a straightfoward
calculation yields that

√
1− ω2 ≤ 1√

1−ω2
− ω√

1−ω2
ω0. Therefore, substituting into the bound for‖riΓc‖2, we get

‖riΓc‖2 ≤ ‖ri‖2
(

1√
1− ω2

− ω√
1− ω2

(

α0 −
β0‖∇If(x)‖2

‖ri‖2

))

(34)

=
1− wα0√
1− ω2

‖ri‖2 +
ωβ0√
1− ω2

‖∇If(x)‖2 (35)

The coefficient prceding‖ri‖2 determines the overall convergence rate, and the minimum value of the coefficient is
attained by settingω = α0. Substituting, we obtain

‖riΓc‖2 ≤
√

1− α2
0‖ri‖2 +

[

β0

α0
+

α0β0
√

1− α2
0

]

‖∇If(x)‖2, (36)

which proves the lemma.

6 Theoretical Analysis of GRAPH-M P under WRSC condition
In order to demonstrate the accuracy of estimates using Algorithm 1 we require a variant of theRestricted Strong
Convexity/Smoothness(RSC/RSS) conditions proposed in[Yuanet al., 2013] to hold. The RSC condition basically
characterizes cost functions that have quadratic bounds onthe derivative of the objective function when restricted to
model-sparse vectors. The condition we rely on, the Weak Restricted Strong Convexity (WRSC), can be formally
defined as follows:

Definition 4 (Weak Restricted Strong Convexity Property (WRSC)). A functionf(x) has condition (ξ, δ,M)-WRSC if
∀x,y ∈ Rn and∀S ∈ M with supp(x)∪ supp(y) ⊆ S, the following inequality holds for someξ > 0 and0 < δ < 1:

‖x− y − ξ∇Sf(x) + ξ∇Sf(y)‖2 ≤ δ‖x− y‖2. (37)

Remark 1. 1) In the special case wheref(x) = ‖y − Ax‖22 and ξ = 1, condition (ξ, δ, M)-WRSC reduces to
the well known Restricted Isometry Property (RIP) condition in compressive sensing. 2) The RSC and RSS con-
ditions imply condition WRSC, which indicates that condition WRSC is no stronger than the RSC and RSS condi-
tions[Yuanet al., 2013] .
Lemma 6.1. [Yuanet al., 2013] Assume thatf is a differentiable function. Iff satisfies condition(ξ, δ,M)-WRSC,
then∀x,y ∈ Rn with supp(x) ∪ supp(y) ⊂ S ∈ M, the following two inequalities hold

1− δ

ξ
‖x− y‖2 ≤ ‖∇Sf(x)−∇Sf(y)‖2 ≤

1 + δ

ξ
‖x− y‖2,

f(x) ≤ f(y) + 〈∇f(y),x− y〉+
1 + δ

2ξ
‖x− y‖22.

Lemma 6.2. Letri = xi − x andΓ = H(∇f(xi)). Then

‖riΓc‖2 ≤
√

1− η2‖ri‖2 +

[

ξ(1 + cH)

η
+

ξη(1 + cH)
√

1− η2

]

‖∇If(x)‖2,

whereη = cH(1− δ)− δ and I = argmaxS∈M(8k,g) ‖∇Sf(x)‖2. We assume thatcH andδ are such thatη > 0.

Proof. DenoteΦ = supp(x) ∈ M(k, g),Γ = H(∇f(xi)) ∈ M(2k, g), ri = xi − x, andΩ = supp(ri) ∈ M(6k, g).
The component‖∇Γf(x

i)‖2 can be lower bounded as

‖∇Γf(x
i)‖2 ≥ cH(‖∇Φf(x

i)−∇Φf(x)‖2 − ‖∇Φf(x)‖2)

≥
cH(1− δ)

ξ
‖ri‖2 − cH‖∇If(x)‖2,

where the last inequality follows from Lemma 6.1. The component‖∇Γf(x
i)‖2 can also be upper bounded as

‖∇Γf(x
i)‖2 ≤

1

ξ
‖ξ∇Γf(x

i)− ξ∇Γf(x)‖2 + ‖∇Γf(x)‖2

≤
1

ξ
‖ξ∇Γf(x

i)− ξ∇Γf(x)− r
i
Γ + r

i
Γ‖2 + ‖∇Γf(x)‖2

≤
1

ξ
‖ξ∇Γ∪Ωf(x

i)− ξ∇Γ∪Ωf(x)− r
i
Γ∪Ω‖2 + ‖riΓ‖2 + ‖∇Γf(x)‖2

≤
δ

ξ
· ‖ri‖2 +

1

ξ
‖riΓ‖2 + ‖∇If(x)‖2,
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where the last inequality follows from condition(ξ, δ,M(8k, g))-WRSC and the fact thatriΓ∪Ω = ri. Let η =
(cH · (1− δ)− δ). Combining the two bounds and grouping terms, we have‖riΓ‖ ≥ η‖ri‖2 − ξ(1 + cH)‖∇If(x)‖2.
After a number of algebraic manipulations similar to those used in[Hegdeet al., 2014a] Page 11, we prove the lemma.

Theorem 6.3. Consider the graph-structured sparsity modelM(k, g) for somek, g ∈ N and a cost functionf :
R

n → R that satisfies condition(ξ, δ,M(8k, g))-WRSC. Ifη = cH(1 − δ) − δ > 0, then for any truex ∈ R
n with

supp(x) ∈ M(k, g), the iterates of Algorithm 1 obey

‖xi+1 − x‖2 ≤ α‖xi − x‖2 + β‖∇If(x)‖, (38)

whereβ = ξ(1+cT )
1−δ

[

(1+cH)
η

+ η(1+cH )√
1−η2

+ 1

]

, α = (1+cT )
1−δ

√

1− η2, andI = argmaxS∈M(8k,g) ‖∇Sf(x)‖2.

Proof. Let ri+1 = xi+1 − x. ‖ri+1‖2 is upper bounded as

‖ri+1‖2 = ‖xi+1 − x‖2 ≤ ‖xi+1 − b‖2 + ‖x− b‖2
≤ cT ‖x− b‖2 + ‖x− b‖2
= (1 + cT )‖x− b‖2,

which follows from the definition of tail approximation. Thecomponent‖(x− b)Ω‖22 is upper bounded as

‖(x− b)Ω‖22 = 〈b− x, (b− x)Ω〉
= 〈b− x− ξ∇Ωf(b) + ξ∇Ωf(x), (b − x)Ω〉 − 〈ξ∇Ωf(x), (b− x)Ω〉
≤ δ‖b− x‖2‖(b− x)Ω‖+ ξ‖∇Ωf(x)‖2‖(b− x)Ω‖2,

where the second equality follows from the fact that∇Ωf(b) = 0 sinceb is the solution to the problem in Step 6 of
Algorithm 1, and the last inequality follows from condition(ξ, δ,M(8k, g))-WRSC. After simplification, we have

‖(x− b)Ω‖2 ≤ δ‖b− x‖2 + ξ‖∇Ωf(x)‖2. (39)

It follows that

‖(x− b)‖2 ≤ ‖(x− b)Ω‖2 + ‖(x− b)Ωc‖2 ≤ δ‖b− x‖2 + ξ‖∇Ωf(x)‖2 + ‖(x− b)Ωc‖2.
After rearrangement we obtain

‖b− x‖2 ≤ ‖(b− x)Ωc‖2
1− δ

+
ξ‖∇Ωf(x)‖2

1− δ

=
‖xΩc‖2
1− δ

+
ξ‖∇Ωf(x)‖2

1− δ
=

‖(x− xi)Ωc‖2
1− δ

+
ξ‖∇Ωf(x)‖2

1− δ

=
‖riΩc‖2
1− δ

+
ξ‖∇Ωf(x)‖2

1− δ
≤ ‖riΓc‖2

1− δ
+

ξ‖∇Ωf(x)‖2
1− δ

,

where the first equality follows from the fact that supp(b) ⊆ Ω, the second and last inequalities follow from the fact
thatΩ = Γ ∪ supp(xi). Combining above inequalities, we obtain

‖ri+1‖2 ≤ (1 + cT )
‖riΓc‖2
1− δ

+ (1 + cT )
ξ‖∇If(x)‖2

1− δ
.

From Lemma 6.2, we have

‖riΓc‖2 ≤
√

1− η2‖ri‖2 +
[

ξ(1 + cH)

η
+

ξη(1 + cH)
√

1− η2

]

‖∇If(x)‖2

Combining the above inequalities, we prove the theorem.

As indicated in Theorem 6.3, under proper conditions the estimator error of GRAPH-MP is determined by the
multiplier of ‖∇Sf(x)‖2, and the convergence rate before reaching this error level is geometric. In particular, if
the truex is sufficiently close to an unconstrained minimum off , then the estimation error is negligible because
‖∇Sf(x)‖2 has a small magnitude. Especially, in the ideal case where∇f(x) = 0, it is guaranteed that we can obtain

the truex to arbitrary precision. If we further assume thatα =
(1+cT )

√
1−η2

√
1−δ

< 1, then exact recovery can be achieved
in finite iterations.
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The shrinkage rateα < 1 controls the convergence of GRAPH-MP, and it implies that whenδ is very small, the
approximation factorscH andcT satisfy

c2H > 1− 1/(1 + cT )
2. (40)

We note that the head and tail approximation algorithms designed in[Hegdeet al., 2015b] do not satisfy the above
condition, withcT =

√
7 andcH =

√

1/14. However, as proved in[Hegdeet al., 2015b], the approximation factor
cH of any given head approximation algorithm can beboosted to any arbitrary constantc′H < 1, such that the
above condition is satisfied. Empirically it is not necessary to boost the head-approximation algorithm as strongly as
suggested by the analysis in[Hegdeet al., 2014a].

Theorem 6.4. Let x ∈ Rn be a true optimum such that supp(x) ∈ M(k, g), andf : Rn → R be a cost function
that satisfies condition(ξ, δ,M(8k, g))-WRSC. Assuming thatα < 1, GRAPH-MP returns ax̂ such that, supp(x̂) ∈
M(5k, g) and‖x− x̂‖2 ≤ c‖∇If(x)‖2, wherec = (1+ β

1−α
) is a fixed constant. Moreover,GRAPH-MP runs in time

O
(

(T + |E| log3 n) log(‖x‖2/‖∇If(x)‖2)
)

, (41)

whereT is the time complexity of one execution of the subproblem in Line 6. In particular, ifT scales linearly withn,
thenGRAPH-MP scales nearly linearly withn.

Proof. The i-th iterate of Algorithm 1 satisfies

‖x− xi‖2 ≤ αi‖x‖2 +
β

1− α
‖∇If(x)‖2. (42)

After t =
⌈

log
(

‖x‖2

‖∇If(x)‖2

)

/ log 1
α

⌉

iterations, Algorithm 1 returns an estimatex̂ satisfying‖x − x̂‖2 ≤ (1 +
β

1−α
)‖∇If(x)‖2. The time complexities of both head and tail approximations areO(|E| log3 n). The time complexity

of one iteration in Algorithm 1 is(T + |E| log3 n), and the total number of iterations is
⌈

log
(

‖x‖2

‖∇If(x)‖2

)

/ log 1
α

⌉

,

and the overall time complexity follows.

Remark 2. The previous algorithmGRAPH-COSAMP [Hegdeet al., 2015b] for compressive sensing is a special
case of GRAPH-MP. Assumef(x) = ‖y − Ax‖22. 1) Reduction. The gradient in Step 3 ofGRAPH-MP has
the form: ∇f(xi) = −AT (y − Axi), and an analytical form ofb in Step 6 can be obtained as:bΩ = A+

Ωy

andbΩc = 0, whereA+ = AT (ATA)−1, which indicates thatGRAPH-MP reduces toGRAPH-COSAMP in this
scenario. 2)Shrinkage rate. The shrinkage rateα of GRAPH-MP is analogous to that ofGRAPH-COSAMP,
even though that the shrinkage rate ofGRAPH-COSAMP is optimized based on theRIP sufficient constants. In
particular, they are identical whenδ is very small. 3)Constant component. Assume thatξ = 1. Condition
(ξ, δ,M(k, g))-WRSC then reduces to the RIP condition in compressive sensing. Lete = y − Ax. The component
‖∇f(xi)‖2 = ‖ATe‖2 is upper bounded by

√
1 + δ‖e‖2 [Hegdeet al., 2014a] . The constantβ‖∇If(x)‖ is then

upper bounded byξ(1+cT )
√
1+δ

1−δ

[

(1+cH)
η

+ η(1+cH )√
1−η2

+ 1

]

‖e‖2 that is analogous to the constant ofGRAPH-COSAMP,

and they are identical whenδ is very small.

7 Application in Graph Scan Statistic Models
In this section, we specialize GRAPH-MP to optimize a number of graph scan statistic models for the task of connected
subgraph detection. Given a graphG = (V,E), whereV = [n],E ⊆ V×V, and each nodev is associated with a vector
of featuresc(v) ∈ R

p. LetS ⊆ V be a connected subset of nodes. A graph scan statistic,F (S) = log Prob(Data|H1(S))
Prob(Data|H0)

,
corresponds to the generalized likelihood ratio test (GLRT) to verify the null hypothesis (H0): c(v) ∼ D1, ∀v ∈ V,
whereD1 refers to a predefined background distribution, against thealternative hypothesis (H1(S)): c(v) ∼ D2, ∀v ∈
S andc(v) ∼ D1, ∀v ∈ V\S, whereD2 refers to a predefined signal distribution. The detection problem is formulated
as

min
S⊆V

−F (S) s.t. |S| ≤ k andS is connected, (43)

wherek is a predefined bound on the size ofS.
Taking elevated mean scan (EMS) statistic for instance, it aims to decide betweenH0 : c(v) ∼ N (0, 1), ∀v ∈ V

andH1(S): c(v) ∼ N (µ, 1), ∀v ∈ S andc(v) ∼ N (0, 1), ∀v ∈ V \ S, where for simplicity each nodev only has a
univariate featurec(v) ∈ R. This statistic is popularly used for detecting signals among node-level numerical features
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on graph[Qianet al., 2014; Arias-Castroet al., 2011] and is formulated asF (S) = (
∑

v∈S c(v))2/|S|. Let the vector
form of S bex ∈ {0, 1}n, such that supp(x) = S. The connected subgraph detection problem can be reformulated as

min
x∈{0,1}n

− (cTx)2

(1Tx)
s.t. supp(x) ∈ M(k, g = 1), (44)

wherec = [c(1), · · · , c(n)]T . To apply GRAPH-MP, we relax the input domain ofx such thatx ∈ [0, 1]n, and the
connected subset of nodes can be found asS = supp(x⋆), the support set of the estimatex⋆ that minimizes the
strongly convex function[Bach, 2011]:

min
x∈Rn

f(x) = − (cTx)2

(1Tx)
+

1

2
xTx s.t. supp(x) ∈ M(k, 1).

Assume thatc is normalized, and hence0 ≤ ci < 1, ∀i. Let ĉ = max{ci}. The Hessian matrix of the above objective
function∇2f(x) ≻ 0 and satisfies the inequalities:

(1− ĉ2) · I � I − (c− cTx

1Tx
1)(c− cTx

1Tx
1)T � 1 · I . (45)

According to Lemma 1 (b) in[Yuanet al., 2013]), the objective functionf(x) satisfies condition(ξ, δ,M(8k, g))-
WRSC thatδ =

√

1− 2ξ(1− ĉ2) + ξ2, for any ξ such thatξ < 2(1 − ĉ2). Hence, the geometric convergence of
GRAPH-MP as shown in Theorem 6.3 is guaranteed. We note that not all thegraph scan statistic functions satisfy
the WRSC condition, but, as shown in our experiments, GRAPH-MP works empirically well for all the scan statistic
functions tested, and the maximum number of iterations to convergence for optimizing each of these scan statistic
functions was less than 10.

We note that our proposed method GRAPH-MP is also applicable to general sparse learning problems (e.g. sparse
logistic regression, sparse principle component analysis) subject to graph-structured constraints, and to a varietyof
subgraph detection problems, such as the detection of anomalous subgraphs, bursty subgraphs, heaviest subgraphs,
frequent subgraphs or communication motifs, predictive subgraphs, and compression subgraphs.

8 Experiments
This section evaluates the effectiveness and efficiency of the proposed GRAPH-MP approach for connected subgraph
detection. The implementation of GRAPH-MP is available at https://github.com/baojianzhou/Graph-MP.

8.1 Experiment Design
Datasets: 1) Water Pollution Dataset. The Battle of the Water Sensor Networks (BWSN)[Ostfeldet al., 2008]

provides a real-world network of 12,527 nodes and 14831 edges, and 4 nodes with chemical contaminant plumes that
are distributed in four different areas. The spreads of contaminant plumes were simulated using the water network
simulator EPANET for 8 hours. For each hour, each node has a sensor that reports 1 if it is polluted; 0, otherwise. We
randomly selectedK percent nodes, and flipped their sensor binary values in order to test the robustness of methods
to noises, whereK ∈ {2, 4, 6, 8, 10}. The objective is to detect the set of polluted nodes. 2) High-Energy Physics
Citation Network. The CitHepPh (high energy physics phenomenology) citationgraph is from the e-print arXiv and
covers all the citations within a dataset of 34,546 papers with 421,578 edges during the period from January 1993 to
April 2002. Each paper is considered as a node, each citationis considered as a edge (direction is not considered), and
each node has one attribute denoting the number of citationsin a specific year (t = 1993, · · · , t = 2002), and another
attribute denoting the average number of citations in that year. The objective is to detect a connected subgraph
of nodes (papers) whose citations are abnormally high in comparison with the citations of nodes outside the
subgraph. This subgraph is considered an indicator of a potential emerging research area. The data before 1999 is
considered as training data, and the data from 1999 to 2002 isconsidered as testing data.

Graph Scan Statistics: Three graph scan statistics were considered, including Kulldorff’s scan statis-
tic [Neill, 2012], expectation-based Poisson scan statistic (EBP)[Neill, 2012], and elevated mean scan statistic (EMS,
Equation (44))[Qianet al., 2014]. The first two require that each node has an observed count of events at that node,
and an expected count. For the water network dataset, the report of the sensor (0 or 1) at each node is considered as
the observed count, and the noise ratio is considered as the expected count. For the CiteHepPh dataset, the number of
citations is considered as the observed count, and the average number of citations is considered as the expected count.
For the EMS statistic, we consider the ratio of observed and expected counts as the feature.

Comparison Methods: Seven state-of-the-art baseline methods are considered, including
EdgeLasso [Sharpnacket al., 2012b], GraphLaplacian [Sharpnacket al., 2012a], LinearTimeSubsetScan
(LTSS) [Neill, 2012], EventTree [Rozenshteinet al., 2014], AdditiveGraphScan [Speakmanet al., 2013],
DepthFirstGraphScan [Speakmanet al., 2016], andNPHGS [Chen and Neill, 2014]. We followed strategies
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WaterNetwork CitHepPh

Kulldorff EMS EBP
Run Time

(sec.) Kulldorff EMS EBP Run Time
Our Method 1668.14 499.97 4032.48 40.98 13859.12 142656.84 9494.62 97.21

GenFusedLasso 541.49 388.04 3051.22 901.51 2861.6 60952.57 6472.84 947.07
EdgeLasso 212.54 308.11 1096.17 70.06 39.42 2.0675.89 261.71 775.61

GraphLaplacian 272.25 182.95 928.41 228.45 1361.91 29463.52 876.31 2637.65
LTSS 686.78 479.40 1733.11 1.33 11965.14 137657.99 9098.22 6.93

EventTree 1304.4 744.45 3677.58 99.27 10651.23 127362.57 8295.47 100.93
AdditiveGraphScan 1127.02 761.08 2794.66 1985.32 12567.29 140078.86 9282.28 2882.74

DepthFirstGraphScan 1059.10 725.65 2674.14 8883.56 7148.46 62774.57 4171.47 9905.45
NPHGS 686.78 479.40 1733.11 1339.46 12021.85 137963.5 9118.96 1244.80

Table 1: Comparison on scores of the three graph scan statistics based on connected subgraphs returned by comparison
methods. EMS and EBP refer to Elevated Mean Scan Statistic and Expectation-Based Poisson Statistic, respectively.

(a) WaterNetwork(Kulldorff) (b) CitHepPh(EMS)

Figure 1: Evolving curves of graph scan statistic scores between our method andGenFusedLasso.

recommended by authors in their original papers to tune the related model parameters. Specifically, for EventTree
and Graph-Laplacian, we tested the set ofλ values:{0.02, 0.04, · · · , 2.0}. DepthFirstScan is an exact search
algorithm and has an exponential time cost in the worst case scenario. We hence set a constraint on the depth of its
search to 10 in order to reduce its time complexity.

We also implemented the generalized fused lasso model (GenFusedLasso) for these three graph scan statistics
using the framework of alternating direction method of multipliers (ADMM). GenFusedLasso is formalized as

min
x∈Rn

−f(x) + λ
∑

(i,j)∈E
‖xi − xj‖, (46)

wheref(x) is a predefined graph scan statistic and the trade-off parameter λ controls the degree of smoothness of
neighboring entries inx. We applied the heuristic rounding step proposed in[Qianet al., 2014] to the numerical
vectorx to identify the connected subgraph. We tested theλ values:{0.02, 0.04, · · · , 2.0, 5.0, 10.0} and returned the
best result.

Our Proposed Method GRAPH-M P: Our proposed GRAPH-MP has a single parameterk, an upper bound of
the subgraph size. We setk = 1000 by default, as the sizes of subgraphs of interest are often small; otherwise, the
detection problem could be less challenging. We note that, to obtain the best performance of our proposed method
GRAPH-MP, we should try a set of differentk values (k = 50, 100, 200, 300, · · · , 1000) and return the best.

Performance Metrics: The overall scores of the three graph scan statistics of the connected subgraphs returned
by the competitive methods were compared and analyzed. The objective is to identify methods that could find the
connected subgraphs with the largest scores. The running times of different methods are compared.

8.2 Evolving Curves of Graph Scan Statistics
Figure 1 presents the comparison between our method andGenFusedLasso on the scores of the best connected
subgraphs that are identified at different iterations basedon the Kulldorff’s scan statistic and the EMS statistic. Note
that, a heuristic rounding process as proposed in[Qianet al., 2014] was applied to the numerical vectorxi estimated by
GenFusedLasso in order to identify the best connected subgraph at each iterationi. As the setting of the parameter
λ will influence the quality of the detected connected subgraph, the results based on differentλ values are also shown
in Figure 1. We observe that our proposed method GRAPH-MP converged in less than 5 steps and the qualities (scan
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statistic scores) of the connected subgraphs identified GRAPH-MP at different iterations were consistently higher than
those returned byGenFusedLasso.

8.3 Comparison on Optimization Quality
The comparison between our method and the other eight baseline methods is shown in Table 1. The scores of the three
graph scan statistics of the connected subgraphs returned by these methods are reported in this table. The results in
indicate that our method outperformed all the baseline methods on the scores, except thatAdditiveGraphScan

achieved the highest EMS score (761.08) on the water networkdata set. AlthoughAdditiveGraphScanperformed
reasonably well in overall, this algorithm is a heuristic algorithm and does not have theoretical guarantees.

8.4 Comparison on Time Cost
Table 1 shows the time costs of all competitive methods on thetwo benchmark data sets. The results indicate that
our method was the second fastest algorithm over all the comparison methods. In particular, the running times of our
method were 10+ times faster than the majority of the methods.

9 Conclusion and Future Work
This paper presents, GRAPH-MP, an efficient algorithm to minimize a general nonlinear function subject to graph-
structured sparsity constraints. For the future work, we plan to explore graph-structured constraints other than con-
nected subgraphs, and analyze theoretical properties of GRAPH-MP for cost functions that do not satisfy the WRSC
condition.
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