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SUMMARY

For the many application domains concerning entities and their connections, often their data can be formally
represented as graphs and an important problem is detecting an anomalous subgraph within it. Numerous
methods have been proposed to speed-up anomalous subgraph detection; however, each incurs non-trivial
costs on detection accuracy. In this paper, we formulate the anomalous subgraph detection problem as the
maximization of a non-parametric scan statistic and then approximate it to a submodular maximization
problem. We propose two parallel algorithms: non-coordination anomalous subgraph detection (NCASD)
and under-coordination anomalous subgraph detection (UCASD)for the anomalous subgraph detection. To
the best of our knowledge, this paper is the first to solve this problem in parallel. NCASD emphasizes speed
at the expense of approximation guarantees, while UCASD achieves a higher approximation factor through
additional coordination controls and reduced parallelism. The experiments demonstrate the effectiveness
and efficiency of our proposed approaches in a real-world application domain (water pollution detection),
comparing them with five other state-of-the-art methods. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Graphs can be used to describe the entities and the connections between them. Detecting a small

subset of vertices with anomaly in one graph is an important problem, which we call anoma-

lous subgraph detection in this paper. Previous works have applied numerous methods to solve the

anomalous subgraph detection problem including using sparse principal component analysis [1] or

eigenvector L1 norms of a graph’s modularity matrix [2]. In fact, many current works adopt a sub-

set scan approach to detect the anomalous subgraph by maximizing a score function F.S/ with

or without constraints on the subsets of the data. Existing methods for subset scan statistic can be

categorized into two main groups: parametric and non-parametric [3]. The latter does not assume

specific forms of distributions for the nodes. Because in practice it is difficult to accurately cap-

ture the probability distribution, in this work, we focus on non-parametric scan statistic (NPSS) and

consider its general optimization framework:

max
S�V

F.S/; s:t: S is connected, (1)

where F.S/ refers to a pre-defined NPSS function, V refers to the ground set of nodes in the input

graph and the constraint on S shows our aim of finding a connected subgraph.
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However, three main technical challenges remain:

� The NPSS function F.S/ is not a submodular function, and therefore, it does not have known

approximation algorithms with theoretical guarantees. Here, submodular is a property of set

functions satisfying diminishing marginal returns: F W 2V ! R, 8A � B � V , and e 2 V nB ,

F.A [ ¹eº/ � F.A/ > F.B [ ¹eº/ � F.B/.
� The connectivity constraint is difficult to handle. For example, even if we consider a simple

modular function F.S/: F.S/ D P
v2S w.s/, where w.v/ W v ! R maps each vertex to a real

value [4], the resulting anomalous subgraph detection problem is NP-hard and does not admit

any finite approximation algorithm.

� The explosive growth of data volume sizes necessitates the development of new, scalable detec-

tion methods. However, most algorithms are inherently serial, making them unsuitable for

this problem.

To address the first challenge, we decompose the non-submodular function into the difference

between two submodular functions and then approximate the function to its lower-bound sub-

modular function. To address the second challenge, we replace the connectivity constraint with a

regularization component based upon the number of connected components of S . Note that the tra-

ditional methods consider penalty functions such as graph Laplacian [5] or graph cut penalty [6],

because these functions are computationally efficient. However, as our experiments show, these

methods do not approximate the connectivity constraint well. To address the third problem, we pro-

pose two parallel algorithms for large-scale data sets. These algorithms offer trade-offs between

speed and accuracy. The primary contributions of our study are summarized as follows:

� Development of parallel algorithms for anomalous subgraph detection. We propose two

parallel algorithms for the anomalous subgraph detection: non-coordination anomalous sub-

graph detection (NCASD) and under-coordination anomalous subgraph detection (UCASD).

They are designed with large data volumes in view. To the best of our knowledge, this is the

first work that uses parallel algorithms to solve the anomalous subgraph detection problem.

� Formulation of NCASD/UCASD framework. We propose the parallel algorithms using

empirical p-value of each node [3] to measure its current anomalous level. We show that the

basic problem can be reformulated as a non-submodular maximization problem subject to the

connectivity constrict on the subset of nodes.

� Comprehensive experiments to validate the effectiveness and efficiency of the proposed
algorithms. Our algorithms are evaluated by extensive experiments on real-world data sets.

The results demonstrate that our algorithms can detect the anomalous subgraph in the large

data set quickly with some trade-offs in the accuracy.

2. RELATED WORK

Anomalous subgraph detection. Anomalous subgraph detection can be applied in a wide variety

of applications such as event detection and disease outbreak detection. Non-parametric methods do

not assume data follow a specific probability distribution and have several advantages over typi-

cal parametric scan statistics, including the ability to integrate information from multiple sources

and to adapt to different data distributions. Additive GraphScan algorithm, proposed by Speakman

[7], allows dynamic subset scan to enforce both soft temporal consistency constraints and hard con-

nectivity constraints while scaling to large, real-world networks. Sharpnack presents Edge Lasso

[6], which investigates sparsistency of fused lasso for general graph structures. The results provide

necessary and sufficient conditions on the graph properties and the signal-to-noise ratio needed to

ensure sparsistency. Chen [3] realizes the event detection with a non-parametric approach. They pro-

pose a non-parametric heterogeneous graph scan (NPHGS) model where ‘sensor’ network is first

built and p-value is used to evaluate the anomalous level of each node. The experiment results show

that their algorithm can enable early event detection. In this paper, we also adopt the non-parametric

scan statistic for the anomalous subgraph detection. All these algorithms discussed previously serve

as the baseline algorithms in our experiments.
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Maximization Submodular function. Submodularity is a desirable property, and the literature

on submodular maximization problems is very large. It can be applied in a large class of real-world

applications, particularly in machine learning, such as statistical machine translation [8], document

summarization [9, 10] and information gathering [11]. Here we just mention a few of the most

relevant works. For monotone (F.A/ 6 F.B/; 8A � B) submodular function, Nemhauser [12]

provides a 1
2

-approximation discrete greedy algorithm. It is improved to a tight 1 � 1
e

approxi-

mation by [13] with a continuous greedy algorithm. For non-monotone submodular function, an

approximation solution with a 1
2

guarantee in [14] is provided using a double greedy algorithm. Pan

[15] improves it to parallel double greedy algorithms with different coordination constraints. In our

paper, we will show our problem can be formulated as a non-monotone submodular maximization

problem and will adopt the corresponding algorithms for it.

3. PROBLEM FORMULATION

Consider a graph as G.V; E; p/, where V D ¹v1; v2; : : : ; vjV jº refers to the set of nodes, E � V �V

refers to the set of edges, and p W V ! Œ0; 1� defines a function that maps a node v to an empirical

p-value, which can be calculated based on empirical calibration by comparing the current features

of this vertex with its features in historical data of no event [3]. The empirical p-value can be seen

as the signal strength of the node’s current attribute values inkling an indicator of some ongoing or

newly emerging event.

3.1. Non-parametric scan statistic

As described, our goal is to find a subset of vertices S � V that has the most anomaly according to

the NPSS. Given a subset S , the general form of NPSS is defined as:

F.S/ D '.˛; N˛.S/; N.S//; (2)

where N˛.S/ D jvi ; vi 2 S; p.vi / 6 ˛j is the number of p-values significant at level ˛, N.S/ D
jS j is the total number of p-values in S and ˛ refers to the predefined significant level (e.g. 0.05).

The function '.˛; N˛.S/; N.S// refers to a non-parametric scan statistic that compares the observed

number of p-values that are significant at level ˛ to the expected number of significant p-values. In

this work, we explore the use of one non-parametric scan statistic: the Berk–Jones (BJ) statistic [16],

stated as

FBJ .S/ D N.S/ � KL

�
N˛.S/

N.S/
; ˛

�
; (3)

where KL is the Kullback–Liebler divergence between the observed and expected proportions of

p-values less than ˛:

KL.x; y/ D x log
x

y
C .1 � x/ log

1 � x

1 � y
: (4)

Recent theoretical and empirical studies have demonstrated that the BJ statistic exhibits outstanding

performance for detecting anomalous patterns, in comparison with other non-parametric statistics,

such as the Higher Criticism (HC) statistic in a number of applications [3, 17–19].

Whether the empirical p-values follow a uniform or piecewise constant distribution is tested by

the BJ statistic, in a log-likelihood ratio form. By combining Eqs. (3) and (4), the BJ function can

be decomposed to the difference between two submodular functions r.S/ and g.S/ [28]:

FBJ .S/ D r.S/ � g.S/; (5)

where

r.S/ D �N.S/ log N.S/; (6)
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g.S/ D �N˛.S/ log

�
N˛.S/

˛

�
� NN˛.S/ log

 NN˛.S/

1 � ˛

!
; (7)

NN˛.S/ D N.S/ � N˛.S/: (8)

The submodularity of function r.S/ and g.S/ can be proved by the definition and Proposition 6.1

of [20].

3.2. Anomalous subgraph detection

Our target aims at detecting the anomalous subgraph, which makes a connectivity constraint that

must be considered when we choose the subset of nodes, while the aforementioned statistic only

considers the maximization problem by finding a subset S of V that is interesting to us with-

out any extra constraints. In this work, we use a connected-component-related factor �.S/ as the

connectivity penalty of subset S .

PROBLEM 1 (ANOMALOUS SUBGRAPH DETECTION) Given a graph G D .V; E; p/, a trade-

off parameter � and a predefined significant parameter ˛, try to find a subset of vertices S � V

maximizing the function

max
S�V

FASD.S/ D max
S�V

r.S/ � g.S/ C ��.S/; (9)

where �.S/ D �Œc.S/�.jV j�jS j/�1�; S � V . Here c.S/ is the number of connected components

in subgraph G.V; ES ; p/, where ES stands for the edge set corresponding to S . jV j� jS j calculates

the number of connected components of the subgraph G.V n S; ES ; p/. The subtraction of one

element in the function ensures that when the subgraph is connected, the function will not obtain any

penalty. � 2 R is the trade-off parameter. If � is a small positive value, the penalty of the optimal

subset of this problem S will be weak. If � is a large positive value, the penalty of the optimal subset

of this problem S will be strong.

Corollary 1

The connected component set function �.S/ is a submodular function.

Proof

According to [21], c.S/ is a supermodular set-function. Here, a supermodular function means that

�c.S/ is submodular. If f is both supermodular and submodular, it is modular. Thus, we know that

jV j � jS j is a modular function. So c.S/ � .jV j � jS j/ � 1 is a supermodular function and thus we

obtain �.S/ is submodular. �

3.3. Submodularized anomalous subgraph detection

Submodular functions have been adopted in numerous areas such as game theory and graph theory.

When we begin to discuss the anomalous subgraph detection problem by looking at the properties

of the objective function F.S/, we find that r.S/, g.S/ and �.S/ are all submodular. However, the

difference between two submodular functions is no longer submodular. Because we deal with the

maximization problem, next we will approximate the difference function as its submodular lower-

bound function, which we denote by SASD and seek for efficient solutions based on submodular

maximization techniques.

PROBLEM 2 (SASD) Given a graph G D .V; E; p/, a trade-off parameter � and a predefined

significant parameter ˛, try to find a subset of vertices S � V maximizing the function

max
S�V

FSASD.S/ D max
S�V

r.S/ � M
g
GX

.S/ C ��.S/; (10)

where M
g
GX

.S/ is the modular upper bound of function of g.S/ (i.e. g.S/ 6 M
g
GX

.S/) [22] shown

in Eqs. (11) and (12). X means a given set, and V means the whole ground set.
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M
g
GX;1

.S/ , g.X/ �
X

j 2XnS

g.j jX n j / C
X

j 2SnX

g.j j;/; (11)

M
g
GX;2

.S/ , g.X/ �
X

j 2XnS

g.j jV n j / C
X

j 2SnX

g.j jX/: (12)

Here f .AjB/ , f .A[B/�f .B/ is the gain of adding A in the context of B . We observe that non-

parametric scan statistic functions are mostly non-submodular. As any non-submodular function can

be decomposed to the difference between two submodular functions [22], our approach is applicable

to these non-parametric scan statistic functions.

4. PARALLEL ALGORITHMS FOR SUBMODULARIZED ANOMALOUS

SUBGRAPH DETECTION

Many of today’s applications consist of a very large ground set jV j D n, which cannot be stored and

calculated in one single computer. Hence, this work focuses on seeking a solution that is suitable for

large-scale computation. In this section, we present our parallel algorithms for the SASD problem,

starting with a brief description of double greedy algorithm, which is the base of our algorithm.

4.1. Greedy algorithms

Many methods have been proposed to solve the submodular functions, including [23], which

offers parallel version of a greedy algorithm for maximizing the monotone submodular functions.

However, many applications cannot be reduced to a monotone function. For these non-monotone

submodular functions, the naive greedy algorithm may bring an arbitrarily poor performance. A

serial double greedy algorithm running in linear time was proposed by Buchibinder [14] that works

well for the non-monotone submodular functions. This algorithm can guarantee a 1
2

approximation

expectation with any order of the elements.

The double greedy algorithm is based on the fact that if function f .S/ is submodular, f 0.S/ D
f .V n S/ is also a submodular function. When we obtain an optimal set S� for f , V n S� is

the optimal solution for the function f 0.S/ [24]. This algorithm searches for the optimal solutions

for both f and f , and it can be seen as two greedy (double greedy) algorithms simultaneously.

This algorithm maintains two sets, S and T . Initially, S0 D ; and T0 D V . In iteration i , Si�1

contains those elements selected before i , Ti�1 contains Si�1 and the elements whose inclusion

in S or exclusion from T has yet to be decided. Clearly, Si�1 � Ti�1. The algorithm serially

considers each item (e.g. item u) in the ground set V to decide whether to keep the item (add

to Si ) or discard it (remove from Ti ) based on the marginal gains. The marginal gain of keeping

item u equals ıC.u/ D F.Si�1 [ ¹uº/ � F.Si�1/, and the marginal gain of discarding u equals

ı�.u/ D F.Ti�1n¹uº/ � F.Ti�1/. After each iteration, the algorithm updates the result by growing

S or shrinking T . When S D T , the algorithm stops.

4.2. Parallel algorithms for the SASD problem

Currently, data volumes are increasing fast, which brings a great challenge for algorithms to pro-

cess them. However, even the most state-of-art algorithms solve the anomalous subgraph detection

problem serially, and as data sizes increase, it will become unsuitable.

Our algorithms are based on the parallel perspective of Pan [15]. Program states (the set A and

B) are recast as data, and the operations (add the element to A and remove element from B) are

seen as transactions. A coordinated bounds approach is designed to address the parallel transaction

processing: on each client, it constructs a transaction with one element under the assumption of a

change to the program state (i.e add to A or remove from B). When the change is under bound, the

transaction can be constructed successfully; if not, the transaction will be sent to the server and the

client starts to deal with the next element. On the server, it reconstructs the transaction and applies it

under the global program state. It maintains two sets A and B for solutions of f and f , respectively.

Copyright © 2016 John Wiley & Sons, Ltd.
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Initially, A D ;; B D V . For each element, the strategy decides whether to add it to A or remove

it from B . All the clients deal with the transactions under the bound generated by the server. By

adjusting the bound, it can span from non-coordination to serial executions.

Algorithm 1 UCASD: Parallel algorithm for Under Coordination Anomalous SubGraph Detection

based on the approach of [15]

1: bA D QA D ;; bB D QB D V; S t D ;
2: do in parallel

3: while 9 u 2 V undecided do
4: with mu � Unif .0; 1/

5: bAu D bA; bBu D bB , QAu D QA [ ¹uº; QBu D QB n ¹uº
6: == calculate marginal gains with Eq. (10)

7: ˛max.u/ D FSASD.bAu [ ¹uºI S t / � FSASD.bAuI S t /

8: ˇmax.u/ D FSASD.bBu n ¹uºI S t / � FSASD.bBuI S t /

9: ˛min.u/ D FSASD. QAuI S t / � FSASD. QAu n ¹uºI S t /

10: ˇmin.u/ D FSASD. QBuI S t / � FSASD. QBu [ ¹uºI S t /

11: if mu <
Œ˛min.u/�C

Œ˛min.u/�C C Œˇmax.u/�C
then

12: FLAG D 0

13: else if mu >
Œ˛max.u/�C

Œ˛max.u/�C C Œˇmin.u/�C
then

14: FLAG D 1

15: else
16: FLAG D getGlobalF lag.A; B; u/

17: end if
18: if FLAG D 0 then
19: bA D bA [ ¹uº, QA D QA [ ¹uº; S t D bA
20: else
21: QB D QB n ¹uº, bB D bB n ¹uº; S t D bA
22: end if
23: end while
24: return bA

We solve our anomalous subgraph detection problem from the view in the previous discussion.

Two parallel algorithms for the anomalous subgraph detection problem are proposed with differ-

ent coordination constraints. NCASD runs with fewer coordination guarantees, while UCASD is

guaranteed with more concurrency controls. Because NCASD can be obtained when we remove

some concurrency controls from the UCASD, in this paper, we just give a detailed description of

the UCASD algorithm, which is shown in Algorithms 1 and 2. In this algorithm, when the bound

is unable to construct the transaction, the client sends the proposed change to the server. The server

handles these elements under global result sets bA and bB , which is described as getGlobalFlag in

Line 17 of Algorithm 1. The notion Œx�C means max¹x; 0º. When approximating the ASD problem

to the SASD problem, we have two different forms, which may bring different results. In this situa-

tion, we choose the result that can make the FASD larger, which is shown in Line 14 in Algorithm 2.

In fact, when calculating the marginal gains in Algorithm 1, we also consider the two different

forms, which are not shown here for brevity.

Non-coordination anomalous subgraph detection just uses ˛max and ˇmax to generate one bound

and all the transactions will be finished under this bound, which makes a weaker guarantee than

UCASD. When the thread number equals 1, NCASD is the same with the serial double greedy

algorithm [14]. During the parallel processing, we set the result sets as global variables. On each

client, before each element to be handled, we need to get all the latest copies of these result sets,

that is bA, bB , QA, QB . When finishing the current element, the changes to the result sets will be update.

Figure 1 describes the parallel algorithms schematically. For the SASD problem, the parallel

algorithms have the following interpretation: several clients proceed the data in parallel. At one

Copyright © 2016 John Wiley & Sons, Ltd.
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Algorithm 2 UCASD: getGlobalFlag.A; B; u/

1: wait until all the elements before u has processed

2: if FLAG D �1 then
3: for i D ¹1; 2º do
4: == with Eq. (11) and (12)

5: F i
SASD.S/ D r.S/ � M

g
GX;i

.S/ C ��.S/

6: ˛i
real

.u/ D F i
SASD.bA [ uI S t / � F i

SASD.bAI S t /

7: ˇi
real

.u/ D F i
SASD.bB n ¹uºI S t / � F i

SASD.bBI S t /

8: if mu <
Œ˛i

real
.u/�C

Œ˛i
real

.u/�C C Œˇi
real

.u/�C
then

9: S t
i D bA [ ¹uº, FLAGi D 0

10: else
11: S t

i D bA, FLAGi D 1

12: end if
13: end for
14: if FASD

�
S t

1

�
> FASD

�
S t

2

�
then

15: FLAG D FLAG1

16: else
17: FLAG D FLAG2

18: end if
19: end if
20: return FLAG

Figure 1. Illustration of the parallel algorithm. Each element is processed by one client. If this transaction
can be finished under the bound, the client can directly inform the server of the changed result. Otherwise,
the element will be processed on the server. After each element is finished, the server updates the result,

which will be taken into account for the next element to be processed.

moment, one vertex of a graph is examined in one client to decide whether to keep this vertex in the

solution or remove it. This is finished randomly and the probabilities depend on the marginal gains

relating to the FSASD function with respect to the current lower and upper bound solutions, bA andbB . We have the following.

Theorem 1 ([15])

The UCASD algorithm provides us a 1
2

-approximation factor for the SASD problem.

Proof

Let As and Bs stand for the solution generated by serial double greedy algorithm, then we have that,

at the beginning,A0 D As
0 D ;; B0 D Bs

0 D V . Suppose that Ai�1 D As
i�1; Bi�1 D Bs

i�1, and u

is the i -th element to process. We see in Algorithms 1 and 2 u 2 A iff mu <
Œ˛min.u/�C

Œ˛min.u/�CCŒˇmax.u/�C
or mu <

Œ˛real .u/�C
Œ˛real .u/�CCŒˇreal .u/�C . If in both cases it satisfies mu <

ŒıC.u/�C
ŒıC.u/�CCŒı�.u/�C , we can obtain

Ai D As
i by induction. Then the NCASD offers us a 1

2
-factor approximate algorithm for function

FSASD.S/, FSASD.A/ > 1
2
FSASD.OP T /.

Copyright © 2016 John Wiley & Sons, Ltd.
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Next, we are going to prove that inequality of mu works. For element u, we use �.u/ to denote its

index in all the elements. Consider any element u0 2 V n u. If u0 2 bAu, it implies that �.u0/ < �.u/.

So we obtain u0 2 A�.u/�1, which means bAu � A�.u/�1.

Now suppose u0 2 A�.u/�1, we can infer that we have added u0 to QAu0 (guaranteed by the

algorithm). Thus, u0 2 QAu. So we can obtain that

bAu � A�.u/�1 � QAu n u

Similarly, if u0 … bBu, it means that we have removed it from B , so �.u0/ < �.u/. Therefore,

u0 … A�.u/�1 and u0 … B �.u/�1. So bBu � B �.u/�1.

Now suppose u0 … B �.u/�1, we can infer that we have removed u0 from QBu0 (guaranteed by the

algorithm). Thus u0 … QBu. So we can obtain that

bBu � B �.u/�1 � QBu [ u

Because the algorithm ensures the committed order of all the elements, we can know that

A�.u/�1 D As and B �.u/�1 D Bs . By submodularity, we can obtain that

˛min.u/ 6 ıC.u/ 6 ˛max.u/;

and

ˇmin.u/ 6 ı�.u/ 6 ˇmax.u/:

Because in the UCASD, when committing element u, all the elements before it has to be pro-

cessed, we have bA D A�.u/�1 and bB D B �.u/�1. Thus, we obtain ˛real.u/ D ıC.u/ and

ˇreal.u/ D ı�.u/.

By using the aforementioned bounds, we can obtain that in both cases, mu <
ŒıC.u/�C

ŒıC.u/�CCŒı�.u/�C ,

which brings a 1
2

-approximation factor for the SASD problem. �

4.3. Experiment setting

4.3.1. Data source. We obtain two data sources for anomalous subgraph detection: (1) bench-

mark data sets. We conduct experiments on benchmark data sets, where the graphs are made up

with grid data. We generate these data sets with different numbers of nodes varying from 100 to

10 000, using the random walk to produce the subgraphs. Each node of the graph has four neigh-

bours. (2) water pollution data set. The ‘Battle of the Water Sensor Networks’ [25] provides a

real-world network of 12 527 nodes, among which 25 nodes are with chemical contaminant plumes

distributed in four different areas. The spreads of these contaminant plumes on graph are simulated

using the water network simulator EPANET that is used in Battle of the Water Sensor Networks

for a period of 8 h. For each hour, each node has a sensor that reports 1 if it is polluted; other-

wise, reports 0. We randomly selected K percent vertices and flip their sensor binary values, where

K D 0; 2; 4; 6; 8; 10; 14; 18; 20; 24; 28; 30, in order to test the robustness of subgraph detection

methods to noises. In order to apply non-parametric graph scan methods to this data set, we map the

sensors whose report values are 1s to empirical p-value 0.05 and those whose report values are 0s

to 1.0.

4.3.2. Experiment setup. We implement the parallel anomalous subgraph detection algorithms in

Java. In this section, our experiments are conducted on one physical machine, configured with 32

Intel(R) Xeon(R) CPU E5-26500 @ 2.00 GHz processors, 256 GB memory and Linux 2.6.32-5-

amd64. During our experiments, we occupy up to 10 processors and our algorithms can run in any

environment with Java Runtime Environment. We also run our algorithm in a distributed system,

which is described in Section 4.5.

Copyright © 2016 John Wiley & Sons, Ltd.
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4.3.3. Parameter settings. Our methods adopt non-parametric scan statistics, which makes the

specification of parameters relatively simple. In our model, we just need to define the value of

parameter ˛ and �. During our experiments, we need ˛ to judge if a node is anomalous and calcu-

late the function F.S/. An inappropriate ˛ may lead to failure in detecting a few highly anomalous

p-values (much smaller than ˛) or many subtly anomalous p-values (slightly smaller than ˛). In

practice, we make ˛ slightly greater than typical significance levels predefined by users with the

value 0.15, which is based on empirical values. � 2 R is the trade-off parameter in Eq. (10). If � is

a small positive value, the penalty of the optimal subset S will be weak. In our experiments, we set

� D 1000.

4.3.4. Comparison methods. We compare our proposed parallel algorithms with five existing rep-

resentative anomalous subgraph detection methods, including Edge Lasso, NPHGS, Additive Graph

Scan, graph Laplacian regularization [5] and depth first [26]. The first three algorithms have been

introduced in Section 2. Here, we just give some brief introduction of the last two algorithms. Graph

Laplacian regularization presents a solution for detecting changepoints in networks under Gaussian

noise. The performance of this method depends on the spectrum of the graph, and this result can

derive the asymptotic properties on few graph topologies. Speakman uses a depth-first search with

backtracking to solve the graph scan. By ruling out subsets provably suboptimal, it gains speed

improvements. The experiments of depth-first algorithm show that it can improve spatial accuracy

and increase robustness to the occurrence of false negatives. The main difference between these

methods is that Edge Lasso and graph Laplacian regularization do not consider the connectivity of

the subgraph.

4.3.5. Performance metrics. We evaluate the experiment result by its similarity with true water

pollution nodes. For each experiment, we consider related performance metrics including the

Runtime and accuracy. The accuracy is evaluated by the F_measure, where F _measure D
2 � precision � recal l

precision C recal l
.

4.4. Experimental results

This section compares our proposed algorithms and five baseline methods on overall runtime and

accuracy with the benchmark data sets and the real-world water pollution data set. The experiment

results are shown in Figures 2 and 3.

4.4.1. Benchmark data sets. Both of our algorithms can solve the SASD problem efficiently.

Figure 2 shows the comparison between our algorithms on the runtime and accuracy. The difference

Figure 2. Experiment results of non-coordination anomalous subgraph detection (NCASD)/under-
coordination anomalous subgraph detection (UCASD) on benchmark data sets. It shows the Runtime and

accuracy of our algorithms with different numbers of nodes.

Copyright © 2016 John Wiley & Sons, Ltd.
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Figure 3. Experimental results. (a) Runtime of our algorithms with different thread numbers. (b) Runtime of
different algorithms at different noise levels. (c) Accuracy measures of different algorithms.

on Runtime of these two algorithms can be seen from Figure 2(a). Both algorithms need to run longer

when the number of nodes increases. And NCASD can always run faster than UCASD no matter

how many nodes they need to process. It seems that more nodes will lead to the difference between

the runtime of two algorithms becoming more apparent. As for the accuracy shown in Figure 2, both

algorithms keep a stable accuracy. Even though the number of nodes increases from 100 to 10 000,

they can always guarantee a F_measure about 0.8, which means a pretty high accuracy. Note that

our proposed algorithms are parallel ones, when we compare the runtime and accuracy of UCASD

and NCASD in those data sets, we run them with the same thread number. In this case, we set the

thread number equal to 2.

4.4.2. Water pollution data set. Besides using the benchmark data sets, we also test our algorithms

on the real-world water pollution data set. We compare the Runtime between two algorithms when

we change the parallelism. At the same time, we make a comparison between our algorithms and

five other baseline methods. When comparing the Runtime of the two parallel algorithms, we run

the experiments on the data set without any noise. When running these algorithms on data sets with

different noise levels, we set the thread number fixed with a value of 10 as one case.

We can see from Figure 3(a) that both parallel algorithms we proposed are faster than the serial

algorithms, and they show good speedup properties when more threads are added. In general, the

NCASD can run faster than the UCASD. When the thread number equals 1, UCASD has a longer

runtime because of the concurrency controls before each element is to be proceeded, which brings

a longer runtime.

We test the ability of our algorithms to detect anomalous subgraph with comparison with five

state-of-the-art methods. Figures 3(b) and (c) presents results for the runtime and the accuracy under

different noise levels. Figure 3(b) shows that under different noise levels, our algorithms can run

Copyright © 2016 John Wiley & Sons, Ltd.
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faster than Additive Graph Scan, depth first and graph Laplacian regularization. Still, NCASD runs

faster than UCASD. And they are both a little slower than Edge Lasso and NPHGS.

When it comes to the accuracy, we can see that although Edge Lasso and NPHGS can run faster

than our algorithms, the accuracy of these two algorithms decrease acutely when the noise level

increases, which is shown in Figure 3. It can also be seen that the accuracy of the graph Laplacian

regularization also decreases dramatically when increasing the noise level. Both NPHGS and Graph

Laplacian regularization decrease from about 0.85 to below 0.1. Although Additive Graph Scan,

depth first and Edge Lasso can have a higher F _measure at first, they will decrease under our

algorithms when the noise level increases. For our proposed algorithms, the accuracy remains sta-

ble and high, always around 0.8 even for noise levels of 30%, which is better than most of the

other algorithms.

4.5. Distributed execution experiments

To satisfy the large data volume, like our previous implementation experience of event detection

system BEE+ on Spark [27], we also test our algorithm on the distributed system. Spark is a fast

and general engine that can be used in large-scale data processing. The fundamental programming

abstraction is called resilient distributed datasets (RDDs), which is a logical collection of data parti-

tioned across machines. Result setsbA and bB are redefined as RDD_A and RDD_B . Because of its

specific framework, we modify the algorithm to make it run in iteration. In each iteration, the worker

nodes in Spark will act as the client. We assign four worker nodes in this case, and these worker

nodes go through the whole input graph and obtain the result RDDs. Then the algorithm will take

these two result RDDs (RDD_A and RDD_B) into account for the next iteration. Considering the

high communication cost when updating parameters on all worker nodes, we delay the operation of

updating the result sets. During each iteration, the algorithm no longer updates the result sets bA andbB after each node is processed. Instead, the update operations of RDD_A and RDD_B occur only

when all the worker nodes finish the execution on the data partitions. For the brevity, we just modify

the NCASD algorithm and the experimental result is shown in Figure 4. In this situation, NCASD

and UCASD algorithms both run with thread number equal to 2.

Because the distributed algorithm runs in iteration, it will bring a result with higher accuracy

while trading-off of the runtime. During the experiment, we stop the distributed algorithm when the

number of newly added nodes is less than 30 (about 2% of true abnormal nodes). This threshold

can be modified by users. A larger threshold will bring a shorter runtime with lower accuracy. It

takes 1743 seconds, 21 iterations to finish the detection, which means each iteration takes about

Figure 4. Experimental result of distributed anomalous subgraph detection based on NCASD algorithm.
It shows the accuracy of different algorithms when the distributed algorithm runs in different itera-
tions. NCASD, non-coordination anomalous subgraph detection; UCASD, under-coordination anomalous

subgraph detection.

Copyright © 2016 John Wiley & Sons, Ltd.

DOI: 10.1002/cpe

Concurrency Computat.: Pract. Exper. 2017; 29: e3769



12 of 13 J. ZHAO ET AL.

83 seconds approximately equal to the runtime of NCASD when the thread number is equal to 2.

The result in Figure 4 proves that the distributed algorithm can detect more abnormal nodes after

each iteration, and it eventually brings a higher accuracy than the NCASD and UCASD algorithms.

While communication cost in Spark results in longer runtime, the experiment result shows that the

distributed algorithm can bring a more accurate detection of the anomalous subgraph.

5. CONCLUSIONS

In this paper, we propose a non-parametric scan statistic model for the anomalous subgraph detec-

tion using BJ statistic to modify it. Considering that the problem of adding a simple connectivity

constraint will also lead to an NP problem, we add the number of connected component as the

penalty to the object function. We can prove that this penalty function has the submodularity, which

can guarantee the submodularity of the whole object function. We eventually approximate the object

function as a submodular function. While existing works mainly work serially, which is not suit-

able for the large data volumes, we propose two algorithms for the submodular model: NCASD and

UCASD. There are differences between these two algorithms in complexity and approximation fac-

tor. Both of these two algorithms analyse the anomaly of each node in the graph and calculate the

marginal gain of adding or removing the node to the result sets. Comparing with the threshold, we

can make the final change to this node. NCASD can obtain the final result with only one thresh-

old, while UCASD needs two thresholds, and will submit those elements out of the bounds to the

server. As far as we know, it is the first work to solve the anomalous subgraph detection problem in

parallel. The experiment results show that our methods achieve significant improvements in speed

with some trade-offs of accuracy. These two algorithms can be formulated to distributed methods.

Unlike the parallel algorithms where the communication cost is far less than the computing process,

the distributed algorithms need to reconsider the high communication costs and delays in the dis-

tributed system. In the future, our ongoing works will include improving distributed algorithms in

the communication efficiency, dealing with graphs which have different properties in each node and

detecting several anomalous subgraphs at the same time.
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