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A Nonparametric Approach to Uncovering
Connected Anomalies by Tree Shaped Priors

Nannan Wu, Feng Chen, Jianxin Li, Jinpeng Huai, Baojian Zhou, Bo Li, Naren Ramakrishnan

Abstract—The area of anomaly detection has recently been expanded in the graph-based data. Anomalous vertices are often
exhibited as a connected subgraph. Few works, however, have focused on connected anomalous subgraph detection because of the
challenge of optimizing graph functionals under connectivity constraints. We employ Non-Parametric Graph Scan (NPGS) statistics for
detecting anomalies within graph-based data. Based on the NPGS statistics, we proposed an efficient approximate approach to the
connected anomalous subgraph detection problem that provides provable guarantees on performance and quality. In particular, we first
decompose the problem into a sequence of subproblems, each of which can be reduced to a Budget Price-Collecting Steiner Tree
(B-PCST) problem, and then develop efficient exact and approximate algorithms for a special category of graphs in which the
anomalous subgraphs can be reformulated in a fixed tree topology. Our method has a wide variety of applications, such as disease
outbreak detection, road traffic congestion detection, and event detection in social media, because the NPGS statistics is free of
distribution assumptions and can be applied to heterogeneous graph data.

Index Terms—Nonparametric graph scan statistic, connected subgraph, Tree prior, Anomalous subgraph.
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1 INTRODUCTION

ANOMALOUS subgraph detection as an open problem
has attracted much attention in recent years [1], [2],

[3], [4], [5], [6]. We consider a graph G = (V,E), where
each vertex v ∈ V is associated with features values xv ∈ R
(e.g., the number of infected patients in Figure 1) that follow
some statistical distributions. The general goal of anomalous
subgraph detection is to optimize some objective functions
(e.g., F (S) where S ⊆ V) of abnormality of the feature
values over all connected subsets of vertices (S ⊆ V). To
motivate this scenario, we consider the cholera outbreak
problem [7] as shown in Figure 1. Suppose that we have
a network of counties (i.e., vertices) and each vertex has a
feature referring to the number of cases of cholera in that
county on a given day. Suppose further that two vertices
are connected by an edge if they share the boundary. We
wish to identify possible cholera outbreaks at a very early
stage, which requires identifying subtle patterns (e.g., a 20%
increase in the number of patients with symptoms of cholera in
four local (connected) counties) in the noisy background data.
These subtle signals may not be detectable if we examine
only a small part of the affected subset (e.g., a single county)
or a larger connected subset containing many unaffected
vertices (e.g., the aggregate count for the entire state). As a
result, traditional “bottom-up” methods (which identify and
aggregate individual vertices [8]) and “top-down” methods
(which detect anomalous global trends (bursts)) often have low
power for detecting the potentially emerging events [9], [10].
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Figure 1: A potential cholera outbreak led to the elevated
number of infected cases in counties near the river, which
form an irregular shaped connected subgraph (cluster) of
counties. (Redrawn from [7].)

The underlying assumption of anomalous pattern detec-
tion is that the features of a majority of vertices are gener-
ated from the same distribution representing the (typically
unknown and possibly complex) normal behavior of the
system; thus, we wish to detect connected or correlated sub-
graphs of vertices which are unexpected given the typical
data distribution (e.g., Gaussian distribution, Poisson distri-
bution). Existing methods can be categorized into two main
groups, namely parametric and nonparametric methods.
Parametric methods assume specific forms of distributions
for features of normal and abnormal vertices respectively,
and formalize anomaly detection as a hypothesis testing
problem. In particular, under the alternative hypothesis
(H1(S)), an underlying anomalous phenomenon is charac-
terized by the following: features of a majority of the vertices
are generated from the same background distribution, and
features of perhaps a small connected subset S ⊆ V of
vertices are generated from a different distribution. The
goal is to maximize an appropriate set function (F (S)),
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typically the likelihood ratio F (S) = Pr(Data|H1(S))
Pr(Data|H0) , over

all possible connected subsets S (with H0 being the null
hypothesis). Depending on specific forms of distributions
assumed, a number of methods have been proposed, in-
cluding expectation-based Poisson statistic [11], Kulldorff
statistic [12], elevated mean scan statistic [6], [13], and
various others.

Nonparametric methods do not assume specific forms
of distributions for normal and abnormal vertices. Instead,
they first estimate a p-value for each vertex based on
empirical calibration by comparing the current features of
this vertex with its features in the historical data for the
vertex [9], [14]. The empirical p-value provides an estimate
of the probability that a randomly selected sample would
have observed features as extreme as the current features
of this vertex, under the null hypothesis that no events of
interest are occurring. This approach then maximizes a score
function F (S) of p-values in S, typically nonparametric
scan statistic measuring the significance of the collection
of p-values in S, over all possible connected subsets. A
number of NPGS statistic functions have been proposed in
recent years, including Berk-Jones (BJ) statistic [15], Higher
Criticism (HC) statistic [16], Tippet’s statistic, rank truncated
statistic, and various others. Note that, these nonparametric
statistic functions were originally proposed to combine p-
values from a set of hypothesis tests in the area of statistical
meta analysis. Recent studies show that these functions
can be well applied to NPGS for detecting anomalous sub-
graphs [9], [17], [18].

This paper focuses on nonparametric methods and con-
siders the general optimization framework of the Non Para-
metric Graph Scan (NPGS) statistics:

max
S⊆V, S is connected

F (S), (1)

where F (S) is a predefined NPGS statistic function. This
optimization problem is hard in general. For example, the
additive statistic function F (S) :=

∑
v∈S − logα x(v) [18]

can be shown to be NP-hard to optimize via reduction from
the net-worth Node-Weighted Prize-Collecting Steiner Tree
(PCST) problem, where p(v) : v → [0, 1] maps each vertex
to an empirical p-value and α is a predefined confidence
level (e.g., 0.05). The PCST problem is known to be NP-hard
and does not admit any finite approximation algorithm [19].
The hardness of the NPGS problem for non-additive statistic
functions is unknown, and the non-additive property makes
it difficult to prove complexity results through reductions
from known discrete optimization problems.

Related Work. Existing algorithms for anomalous con-
nected subgraph detection have two main groups, namely
exact and approximate algorithms. 1) Exact algorithms.
An exhaustive search algorithm, FlexScan, is proposed to
identify the most anomalous connected subgraph within all
connected subgraphs formed by a center and a connected
subset of its k − 1 neighbors [3]. By applying Linear Time
Subset Scanning (LTSS [20]) to filter sub-optimal subsets,
Speakman and Neill et al. improve the previous work, FlexS-
can, by designing a new branch-and-bound algorithm to
graph-structured data [5]. 2) Approximate algorithms. For
the anomalous connected subgraph, Duczmal and Assunção
present a heuristic algorithm with a simulated annealing

strategy [1], which is extended by incorporating regulariza-
tion on the compactness of subgraphs [2]. Speakman et al.
present an additive subgraph detection algorithm based on
dijkstra’s algorithm [21]. Rozenshtein et al. apply semidef-
inite programming and the GW-algorithm [22] to identify
anomalous subgraphs that are compact but not necessarily
connected. Chen and Neil propose a greedy algorithm based
on iterative subgraph expansion and linear time subset scan-
ning [9]. The aforementioned exact algorithms enable exact
computation of the highest-scoring connected subgraphs,
but become computationally infeasible if the graph size is
larger than 1000. The approximate algorithms are mostly
scalable to large datasets, but have no theoretical guarantees
on the quality of the returned subgraphs for general graphs.

The main contributions of our work are summarized:

• Hardness analysis. We reformulate the NPGS prob-
lem as a sequence of B-PCST sub-problems and show
that this reformulated problem is NP-hard for a large
class of non-additive nonparametric statistic func-
tions. These functions satisfy two intuitive properties
on the cardinality of the input subgraph S and the
number of vertices in S that are significant at a
predefined confidence level α.

• Exact and approximate algorithms for a special
category of tree-priors graphs. We develop efficient
algorithms to the NPGS problem that are guaranteed
to find an optimal solution in worst-case O(N4) time
and an (1 + ε)L-approximate solution in worst case
O(N3/ε) time, respectively, when the connectivity
constraint of the subgraph can be reformulated in
a fixed tree topology, where L refers to the depth of
the tree topology.

• Comprehensive experiments to validate the effec-
tiveness and efficiency of the proposed techniques.
We conduct extensive experiments on a water sensor
dataset and a Chinese Weibo dataset. The results
demonstrate that our proposed algorithms outper-
form existing representative techniques for both per-
formance and quality.

• Real-world case studies. We apply our proposed
method to cyber-attack detection in Internet traffic
networks, haze event detection in social networks,
and road congested detection in road networks.
By case studies, we validate our method that has
wide applications in uncovering connected subgraph
anomalies.

This paper is organized as follows. Section 2 reviews
nonparametric graph scan statistics. Section 3 first presents
the decomposition of the NPGS problem into a sequence
of subproblems, the NP-hardness of the NPGS problem,
and efficient approximation algorithms. Experiments on the
three real-datasets are presented in Section 4, and Section 5
concludes the current work and describes the future work.

2 NONPARAMETRIC GRAPH SCAN STATISTICS

Given a graph G(V,E, p) where V = {v1, ..., vN}, N refers
to the total number of vertices, E ⊆ V × V refers to the set
of edges, and the mapping function p : V → [0, 1] defines
a single empirical p-value corresponding to each node v.
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Figure 2: The BJ statistic scores of the three example sub-
graphs demonstrate that this score function increases with
Nα(S) and decreases with N(S) − Nα(S) and α. Yellow-
colored vertices refer to the vertices whose p-values are less
than or equal to α.

About the definition for the mapping function p, we can
refer to the recent work [9]. The general form of the Non-
Parametric Graph Scan (NPGS) statistic [9], [17] is defined
as:

F (S) = max
α

Fα(S) = max
α

φ(α,Nα(S), N(S)), (2)

where S ⊆ V refers to a connected set of vertices (subgraph),
Nα(S) =

∑
v∈S δ(p(v) ≤ α) (i.e., δ(·) = 1 if its input is true,

otherwise δ(·) = 0) is the number of p-values significant at
level α, N(S) =

∑
v∈S 1 is the total number of p-values

in S. The significance level α can be optimized between
0 and some constant αmax (0.15 by default). The function
φ(α,Nα(S), N(S)) refers to a nonparametric scan statistic,
i.e., a function that compares the observed number of p-
values Nα(S) that are significant at level α to the expected
number of significant p-values E[Nα(S)] = αN(S), under
the null hypothesis that p-values are uniformly distributed
on [0, 1]. We assume that the function φ(α,Nα(S), N(S))
satisfies the two intuitive properties:

(P1) φ is monotonically increasing w.r.t. Nα(S),
(P2) φ is monotonically decreasing w.r.t. N(S)−Nα(S).

These assumptions follow natually because the ratio of
expected number of significant p-values Nα(S) / (Nα(S) +
N(S) − Nα(S))α increases with the numerator (P1), and
decreases with the (N(S)−Nα(S)) (P2). For the range of α
in nonparametric scan statistics, its importance is discussed
in [9].

This paper presents efficient algorithms for the large
class of nonparametric scan statistics that satisfy the above
two properties, such as the Berk-Jones (BJ) statistic [23],
the Higher Criticism (HC) statistic [24], the Kolmogorov-
Smirnov statistic, the Davidov-Herman statistic, and the chi-
bar squared statistic. For illustration purpose, we consider
the first two functions. For the simplicity, we write Nα(S)
as Nα and N(S) as N . The BJ statistic is defined as:

ϕBJ(α,Nα, N) = N × KL
(
Nα
N
,α

)
, (3)

where KL is the Kullback-Liebler divergence between the
observed and expected proportions of p-values less than α:

KL(a, b) = a log
(a
b

)
+ (1− a) log

(
1− a
1− b

)
.

where a, b ∈ [0, 1], especially when b = 0 or b = 1, we have
KL(a, b) = 0. The BJ statistic can be interpreted as the log-
likelihood ratio statistic for testing whether the empirical p-
values follow a uniform or piecewise constant distribution.
We illustrate the BJ statistic in Figure 2. Berk and Jones [23]
demonstrated that this statistic fulfills several optimality
properties and has greater power than any weighted Kol-
mogorov statistic. The HC statistic is defined as:

ϕHC(α,Nα, N) =
Nα −Nα√
Nα(1− α)

. (4)

The HC statistic can be interpreted as the log-likelihood ra-
tio statistic for testing wether the empirical p-values follow
a uniform or binomial distribution with the parameters N
and α.

Given a selected nonparametric scan statistic function
ϕ(α,Nα(S), N(S)), the detection of the most anomalous
connected subgraph from V can be formalized as the fol-
lowing optimization problem:

max
S⊆V:S is connected

max
α≤αmax

φ(α,Nα(S), N(S)), (5)

which is equivalent to the problem:

max
α∈U(V,αmax)

max
S⊆V:S is connected

φ(α,Nα(S), N(S)), (6)

where U(V, αmax) refers to the union of {αmax} and the set
of distinct p-values less than αmax in V.

3 METHODOLOGY

This section reformulates the NPGS problem as a sequence
of subproblems, where each subproblem can be reduced
to a budget prize-collecting steiner tree problem [25], and
presents approximate algorithms with provable guarantees.

3.1 Problem Reformulation
Let S−α ≡ {v | p(v) ≤ α, v ∈ S}, S+

α ≡ {v | p(v) > α, v ∈
S}. We denote a vertex v as an abnormal vertex if p(v) ≤
α; otherwise, a normal vertex (i.e., abnormal set S−α and
normal set S+

α ).

Lemma 1. Given a set of normal vertices Q ⊆ V +
α , the NPGS

problem has an additional constraint on S+
α :

max
α∈U(V,αmax)

max
S⊆V:S is connected

φ(α,Nα(S), N(S)), s.t. S+
α = Q

(7)
is equivalent to the problem:

max
α∈U(V,αmax)

max
S⊆V:S is connected

Nα(S), s.t. S+
α = Q. (8)

Proof. It suffices to prove the equivalence for each α ∈
U(V, αmax) by contradiction. We assume that α is fixed and
S∗ is the optimal solution to Problem (8), but not the optimal
solution to Problem (7). It follows that there is another
feasible subgraph S0, such that φ(α,Nα(S∗), N(S∗)) ≤
φ(α,Nα(S0), N(S0)). The constraint S+

α = Q (i.e., the prop-
erty P2) in Problem (7) is the same as in Problem (8). Accord-
ing to the property P1, there must be Nα(S∗) ≤ Nα(S0),
and thus S∗ is not the optimal solution to Problem (8). This
contradiction gives the proof.



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2868097, IEEE
Transactions on Knowledge and Data Engineering

4

Figure 3: (a) An illustration of our work to decompose NPGS problem into a sequence of K-budget subgraph detection
problems. (b) With the number of normal vertices is equal to K, including v, we aim to find a solution including more
abnormal vertices. We consider assigning the value of π+

K in vertex V as a multiple-choice knapsack problem from π+ of
children V1,...,h. MCK refers to multiple choice knapsack.

Lemma 1 states that when we fix normal vertices in S,
the optimal S can be obtained by finding the largest number
of abnormal vertices for S subject to the constraint that S
is connected. As shown in Lemma 2, this problem can be
further generalized to the situation with a budget constraint
on the cardinality of normal vertices in S.

Lemma 2. We denote N̄α(S) ≡ N(S) − Nα(S) and present
the NPGS problem with a budget constraint on the cardinality of
normal vertices in S:

max
α∈U(V,αmax)

max
S⊆V:S is connected

φ(α,Nα(S), N(S)),

s.t. N̄α(S) ≤ K
(9)

is equivalent to the problem:

max
α∈U(V,αmax)

max
S⊆V:S is connected

Nα(S), s.t. N̄α(S) ≤ K. (10)

Proof. Each feasible subgraph S can be decomposed to the
subset of normal vertices S+ and the subset of abnormal
vertices S− satisfying the conditions: N(S+) ≤ K and
S = S+ ∪S−. According to Lemma 1, for each possible S+,
the best subsets S− for Problem (9) and Problems (10) are
identical. It follows that the best subsets S for Problem (9)
and Problems (10) are identical as well.

Based on the above lemmas, we are ready to present a
new reformulation of the NPGS problem that can be decom-
posed to simpler subproblems and efficiently approximated.

Theorem 1 (NPGS Reformulation). The NPGS problem (6)
is equivalent to the following problem:

(α̂, Ŝ) = max
α∈U(V,αmax)

max
Sα∈{S0

α,...,S
N
α }
φ(α,Nα(S), N(S)),

(11)
Given the significant level α, each set SKα is obtained by solving
the following K-budget subgraph detection subproblem for K =
0, · · · , N :

SKα = max
S⊆V:S is connected

Nα(S), s.t. N̄α(S) ≤ K. (12)

This subproblem can be reduced to the Budget node-weighted
Prize Collecting Steiner Tree problem (B-PCST) [25]. Let T(G) ≡
{T = (VT ,ET )} denote the set of sub-trees of G. We define

πα(v) = 1 and cα(v) = 0 if p(v) ≤ α, otherwise πα(v) = 0
and cα(v) = 1.

T Kα = max
T ∈T(G)

∑
v∈VT

πα(v), s.t.
∑
v∈VT

cα(v) ≤ K, (13)

where for K = 0, · · · , N , each SKα = VT Kα and T Kα refers to the
optimum tree to Problem (13).

Proof. This theorem can be proved by contradiction. Sup-
pose (α̂, Ŝ) is not an optimal solution to the NPGS problem.
It follows that there exists a different solution (α∗, S∗), such
that φ(α∗, Nα∗(S

∗), N(S∗)) > φ(α̂, Nα̂(Ŝ), N(Ŝ)).
Let K̂ := N(Ŝ)−Nα̂(Ŝ) and K∗ := N(S∗)−Nα∗(S∗).

We first observe that Nα∗(VT K∗
α∗

) = Nα∗(S
∗); Otherwise,

VT K∗
α∗

will be the optimal subset, instead of S∗ due to the
properties (P1) and (P2). This result shows that a sub-tree T
derived from (α∗, S∗) must be the solution of Problem (13).
Similarly, it can be shown that Nα̂(VT K̂α̂ ) = Nα̂(Ŝ).

As (α̂, Ŝ) is the optimal solution to the reformulated
problem (11), the inequality must be true (i.e., the solution
(α̂, Ŝ) is better than all of the tuples (α, S) (except it-
self) derived from Problem (13)): φ(α∗, Nα∗(S

∗), N(S∗)) ≤
φ(α̂, Nα̂(Ŝ), N(Ŝ)), a contradiction. Therefore, the initial
assumption – (α̂, Ŝ) is not an optimal solution to the NPGS
problem – must be false.

We illustrate our reformulation method in Figure 3. The
NPGS reformulation provides two theoretical properties:
NP-hardness of the NPGS problem (Theorem 2) and con-
nection to previous work [9] (Lemma 3).

Theorem 2 (Hardness). The NPGS problem (6) is NP-hard
for the large class of nonparametric scan statistic functions that
satisfy the properties (P1) and (P2).

Proof. As shown in Theorem 1, if we consider the class of
nonparametric scan statistic functions satisfying (P1) and
(P2), the resulting NPGS problem can be decomposed to a
sequence of K-budget subgraph detection subproblems (12).
Each K-budget subgraph detection subproblem (12) can be
shown to be NP-hard through a reduction from a B-PCST
problem (13) in which all vertices have binary prizes and
costs of 0 or 1. The NP-hardness of the NPGS problem can
then be readily proved.
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Algorithm 1: Tree-Shape-Priors Subgraph Detection

Input: Graph G(V,E, p)
Result: The most anomalous subgraph S∗

1 Set αmax = 0.15 and C = 5;
2 for c ∈ {1, · · · , C} do
3 Select seed vertex v0 from {v|v ∈ V, p(v) ≤ αmax};
4 Approximate the graph G as a tree T (v0);
5 for α ∈ U(V, αmax) do
6 for K = 0, · · · , N̄α(V) do
7 SKα ← KBudgetSubTree(K, Tv0

, α);
8 end
9 Sα = max

S∈
{
S0
α,...,S

N̄α(V)
α

} φ(α,Nα(S), N(S));

10 end
11 Sc = maxα∈U(V,αmax) φ(α,Nα(Sα), N(Sα));
12 end
13 Calculate c∗ = maxc φ(α,Nα(Sc), N(Sc));
14 return Sc

∗

For the general graphs, we demonstrate in Lemma 3 that
a state-of-the-art algorithm to the NPGS problem is sub-
optimal in general cases.

Lemma 3 (connection to previous work [9]). The greedy
algorithm proposed in a recent work [9] always returns a sub-
optimal subgraph to the NPGS problem (11) when the optimal
subgraph S∗ /∈ {S0

α | α ∈ U(V, αmax)}; and its approximation
factor is unbounded in the worst case.

Proof. When S∗ /∈ {S0
α | α ∈ U(V, αmax)} as defined in

Euqation (12), it means S∗ contains at least one normal
vertex, which is in violation to the optimality condition of
greedy algorithm (See Theorem 2 in [9]) that there is no
“break-tire” vertex (e.g., a vertex v with p-value greater
than α and whose deletion will break the connectivity of
S∗). The greedy algorithm will not include normal vertices
in the solution, as their inclusion will decrease the objective
score locally. Hence, S∗ will not be returned by the greedy
algorithm as the final solution. Its approximation factor
can be proved to be arbitrarily worse when the anomalous
subgraph is composed of balanced connected components
components of abnormal vertices that are connected via a
small number of normal vertices.

With reduction to the equivalent B-PCST problem (13),
there is an O(logN)-approximation solution by applying a
polynomial-time approximation algorithm [25] of the NP-
hard B-PCST problem. Detecting the optimal anomalous
connected subgraph in general graphs is still difficult for the
optimization methods with theoretical properties is hard to
incorporate the structure of general graphs. We will present
our method with nice theoretical properties by tree shaped
priors in next subsections.

3.2 Approximations for graphs with tree shaped priors

In the preceding subsections, we have discussed the NP-
hardness of the NPGS problem. However, for the gen-
eral graphs, both the Big-O approximation factor and the
polynomial time complexity of this approximation are not
satisfactory for large graph analysis.

To design more efficient solutions to the subproblem (13),
we propose to reformulate the connectivity constraint of the
subgraph S on a fixed topology (e.g., tree). Particularly, we
approximate the graph G as a tree Tv originating at a given
root vertex v ∈ V, and the search of the best connected
subgraph S for the NPGS problem is approximated as
the search of the best sub-tree in Tv . There are several
heuristics to find the tree for the input graph: (1) breadth-
first tree; (2) random spanning tree; (3) steiner tree; and (4)
geodesic shortest path tree. The first three tree heuristics
have been successfully applied to discrepancy maximiza-
tion on general graphs [26]. The fourth tree heuristic has
been successfully applied to image segmentation and sensor
networks [27].

Breadth-First Tree (BFS-Tree): A very simple way to obtain a
tree for a given graph is to perform breadth-first search from
the root vertex v. The BFS-Tree heuristic follows exactly this
strategy. It selects a random set of candidate root vertices
and generates a breadth-first tree for each candidate root
vertex. It then computes the best sub-tree for each subprob-
lem (12) and returns the best solution.

Random Spanning Tree (Random-ST): Instead of comput-
ing BFS from each candidate root vertex, we can work with a
random tree that spans all vertices. We sample such a random
tree by assigning a random weight (uniformly from [0, 1]) to
every edge, and computing the minimum weight spanning
tree. The Random-ST heuristic works by computing a num-
ber of such random spanning trees, computing the best sub-
tree to each subproblem (13), and returning the best solution
found.

Steiner Tree (Steiner-T): The previous two heuristics do not
consider the properties (P1) and (P2) of the NPGS problem.
Intuitively, a tree is good if it interconnects abnormal ver-
tices with the least number of normal vertices. If we denote
each abnormal vertex as a terminal vertex, and each normal
vertex as a steiner vertex, this tree can be identified by
generating the steiner tree of the input graph. The Steiner-T
heuristic computes the steiner tree for each α ∈ U(V, αmax),
computes the best sub-tree to each subproblem (13), and
returns the best solution found.

Geodesic Shortest Path tree (Geodesic-SPT): The Geodesic-
SPT heuristic allows to use a domain depending lo-
cal geodesic metric and additionally to incorporate a-
prior knowledge about the geometry of the subgraph
of interest [27]. For the NPGS problem, we define the
optimal cost (local geodesic metric) of the connecting
path p between a fixed vertex s and any vertex x in
the subgraph based on its nonparametric scan statistic:
exp{−maxα φ(α,Nα(Sp), N(Sp))}, where Sp refers to the
set of vertices in p. Given the geodesic metric, the shortest
path tree can be computed via dynamic algorithms [28].

Algorithm 1 presents the approximation algorithm to the
NPGS problem based on the tree shape priors. In Step 1, C
refers to the number of seed root vertices (C = 5 by default).
Step 4 approximates the input graph G as a tree T (v0)
using one of the above four heuristics. Step 7 applies the
dynamic algorithms (Section 3.3) to calculate the solution
SKα to the K-budget subgraph detection problem (13) in the
tree T (v0).
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Algorithm 2: KBudgetSubTree
Input: Integer K, tree T , and significance level α
Result: Optimal sub-tree to the K-budget subgraph

detection problem (13)
1 Call DP(T ,K) to update π−vl , π+v

l , πvl s
v
l , nvl , and Cvl

for each vertex v in T and l = 0, · · · ,K;
2 v ← the root vertex of T ;
3 while svK = False do
4 v = nvK ;
5 end
6 S = GetSubTree(T , v,K);
7 return S
8 Procedure GetSubTree(T , v, l)
9 S = φ ;

10 for (vchild, l) in Cvl do
11 S = S ∪GetSubTree(T (vchild), vchild, l) ;
12 S = S ∪ {vchild} ;
13 end
14 return S

3.3 Dynamic algorithms for the K-Budget Subgraph
Detection Subproblem (13)

When the input graph G is a tree T (v) with the root vertex v,
we can solve the subproblem (13) optimally, using dynamic
programming (DP). We first introduce a few notations:

• T (v): a sub-tree of G with the root vertex v.
• π−vl : the value of the best l-budget sub-tree to the

subproblem (13) in T (v) that does not contain v.
• π+v

l : the value of the best l-budget sub-tree to the
subproblem (13) in T (v) that contains v.

• πvl : πvl = max{π−vl , π+v
l }.

• svl : a boolean value that indicates if vertex v belongs
to the best l-budget sub-tree in T (v).

• nvl : a vertex pointer that indicates to which child of v
to find the best l-budget sub-tree, if svl = False.

• Cvl : a set of tuples of the form (v′, t). Hereby, v′ is a
child of v and t is an integer number that denotes the
size of the sub-tree to be collected in T (v′).

• C(v): the set of children of v in T (v).

Algorithm 2 is the overall algorithm for the subprob-
lem (13). Step 1 calls the dynamic programming (DP)
procedure (Algorithm 3) to update the attributes for each
vertex in T . Steps 2 to 5 retrieve the root vertex of the
optimal sub-tree. Step 6 calls the procedure GetSubTree
to retrieve the set S of vertices in the optimal sub-tree.
The DP procedure is described in Algorithm 3. It calculates
the attributes {π−vl , π+v

l , πvl , s
v
l , n

v
l , C

v
l }Kl=0 for each vertex

v. The vertices are processed from bottom to top, such that
when we start to process a vertex v, the attributes of its child
vertices have already been calculated. Specifically, Steps 2 to
11 in Algorithm 3 set initial values to the attributes of leaf
vertices. The status variable b(v) is a 0-1 value that indicates
if the attributes of the vertex v have been calculated. Steps
13 to 19 in Algorithm 3 update the attributes of a selected
vertex v, in which its status variable b(v) is 0 and status
variables of its child vertices are all 1s.

Algorithm 3: Dynamic Programming (DP)
Input: Tree T and integer K
Result: Tree T with the updated attributes

{π−vl , π+v
l , πvl , s

v
l , n

v
l , C

v
l }Kl=0 at each vertex v

1 b(v) = 0, ∀v ∈ T ;
2 for each leaf vertex v of T do
3 π−v0 = 0;
4 l = δ(p(v) > α);
5 if l = 1 then
6 π−vl = 0; π+v

l = 0; πvl = 0;
7 π+v

0 = 0; πv0 = 0;
8 else
9 π+v

0 = 1; πv0 = 1;
10 end
11 b(v) = 1;
12 end
13 while ∃v ∈ T ,∀vchild ∈ C(v), b(v) = 0, b(vchild) = 1

do
14 Update {π−vl , π+v

l , nvl , Cvl }Kl=0 via Equations (14),
(15), and (18);

15 if π−vl > π+v
l then

16 πvl = π−vl ; svl = False;
17 else
18 πvl = π+v

l ; svl = True;
19 end
20 end
21 return Tree T

The attributes nvl and π−vl are computed as follows:

nvl = arg max
vi
{πv1

l , · · · , π
vh
l }, π

−v
l = π

nvl
l , (14)

where {v1, · · · , vh} refer to the h child vertices of the vertex
v. As illustrated in Figure 3(b), the computation of the
attribute π+v

l can be reduced to a 0-1 multiple-choice knap-
sack (0-1 MCK) problem [29]: Given h classes Z1, · · · ,Zh of
items to pack in a knapsack of capacity (l − δ(p(v) > α)),
where Zi = {1, · · · ,K}. Each item j ∈ Zi has a profit π+vi

j

and a budget j, and the problem is to choose at most one
item from each class such that the profit sum is maximized
without having the sum of budget to exceed j. The attribute
π+v
l can then be calculated as:

π+v
l = max

x
δ(p(v) ≤ α) +

h∑
i=1

K∑
j=0

π+vi
j · xi,j (15)

subject to

h∑
i=1

K∑
j=0

j · xi,j ≤ l − δ(p(v) > α), (16)

K∑
j=0

xi,j ≤ 1, i = 1, · · · , h. (17)

where x ∈ {0, 1}h×K . The delta function δ(·) = 1 if its input
is True, otherwise δ(·) = 0. Given the result x from the
above problem (15), the set attribute Cvl can be calculated
as:

Cvl = {(vi, j)|xi,j = 1}. (18)
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The optimal solution to the 0-1 MCK problem (15) can be
obtained via dynamic programming in time O(K2h2) [30].
There is an approximation algorithm to this problem that
has the approximation factor (1 + ε) and the running time
O(Kh2/ε) [29].

Theorem 3. 1) Exact Solution: If each 0-1 MCK subprob-
lem (15) is solved via dynamic programming [30], Algorithm 1
is guaranteed to find the optimal solution to the tree-priors-based
NPGS problem with the time complexity O(|U(V, αmax)| ·N4);
2) Approximate Solution: If each 0-1 MCK subproblem (15) is
solved via the approximation algorithm [29], then Algorithm 1 is
guaranteed to find an approximate solution to the tree-priors-based
NPGS problem with the approximation factor (1 + ε)L, where L
refers to the depth of the sub-tree of G, and the time complexity is
O(|U(V, αmax)| ·N3/ε).

Proof. The processing of 0-1 MCK subproblems is a dom-
inant component of Algorithm 1 in running time. For a
vertex v and its h child vertices, we are given h classes
Z1, · · · ,Zh of items to pack in a knapsack of capacity
(l − δ(p(v) > α)), where Zi = {1, · · · ,K}, with the
time O(K2h2) for exact solution via dynamic program-
ming [30] and the time O(Kh2/ε) for approximate solu-
tion [29]. The total time costs to process all the vertices
are hence O(K2N2) and O(KN2/ε) for calculating the
exact and approximate solutions for the sub-procedure Al-
gorithm 2 (KBudgetSubTree), respectively. KBudgetSubTree
will be called O(|U(V, αmax)|) times. Therefore, the total
running times of calculating exact and approximation so-
lutions are O(|U(V, αmax)|N4) and O(|U(V, αmax)|N3/ε),
respectively. Furthermore, we note that |U(V, αmax)| can
be considered as a constant as justified in [9], and thus
the algorithm scales as O(N4) and O(N3/ε), respectively.
We can induce one-level tree T ∗ (i.e., the tree just contains
one root node and the leaf nodes) from the optimal subtree.
Similarly, we can induce one-level tree T̂ from the detected
tree S in Algorithm 2, where S has at most L levels and L
refers to the depth of the sub-tree of G. Now we compare
T̂ and T ∗, and it is a typical 0-1 MCK problem. For T̂ ,
its leaf nodes are (1 + ε)L−1 approximations for there are
exact (L − 1)-level nested 0-1 MCK problems. Thus T̂
is approximated to T ∗ with the the approximation factor
(1+ε)L. We return the best solution from theK|U(V, αmax)|
solutions in Algorithm 1. Thus we prove the approximate
solution to the tree-priors-based NPGS problem with the
approximation factor (1 + ε)L.

The depth of the detected tree S is usually less than the
depth of the sub-tree of G for the size of S is small, and so
the approximation factor (1 + ε)L is a relaxed version.

3.4 Optimization

Algorithm 1 proceeds with a sequence of calls to the K-
budget subtree detection algorithm (Algorithm 2) to address
the subproblems (13) for different combinations of α and K.
This algorithm can be further improved via the following
optimization strategies:

First, instead of N̄α(V) calls to Algorithm 1, it suf-
fices to call Algorithm 3 only once with K = N̄α(V),
and the returned Tree T with the updated attributes

{π−vl , π+v
l , πvl , s

v
l , n

v
l , C

v
l }Kl=0 at each vertex v can be used

to retrieve the sub-trees to the K-budget subgraph detection
subproblems (13) for K = 0, · · · , N̄α(V).

Second, in Algorithm 3, after the attributes of the vertex
v are calculated: {πvl , π

−v
l , π+v

l , nvl , Cvl }Kl=0 in Steps 14 to 19,
we check πvl based on the order l = K, · · · , 1. The attributes
{πvl , π

−v
l , π+v

l , nvl , Cvl } related to the l-budget solution can
be safely removed, if at least one of the following conditions
is satisfied: 1) π+v

l ≤ π+v
l−1; 2) φ(α, a + πvl , a + l + πvl ) ≤

φ(α, a+πvl−1, a+πvl−1+l−1); and 3) φ(α, a+πvl , a+πvl +l) ≤
φ(α, a, a), where a = Nα(VT )−Nα(VT (v)).

Third, denote U(V, αmax) = {α1, α2, · · · , αZ}, and as-
sume that the α values are processed in the order based
on the index. Suppose the current α is αi. In Algorithm 3,
we maintain an additional attribute q in the root r that
refers to an upper-bound of the number of abnormal vertices
in the optimal subtree. Based on q, we can calculate an
upperbound of the best subtree as follows: φ(αi, q, q). In
the beginning, q = Nαi(V). When the attributes of a vertex
v are calculated in Steps 14 to 20, we apply the above opti-
mization strategy to remove unnecessary l-budget subtrees
rooted at v. Suppose L = {l1, · · · , lh} refers to the set of
l-values that have been pruned. Then q can be updated
as follows: q = q − (maxl∈{0,··· ,N̄αi (V)}{πvl }Nα(VT (v)) −
maxl{π+v

l }). When each time q is updated, we com-
pare the resulting upper bound φ(αi, q, q) with the best
score Fi = maxj∈{1,···i−1} φ(αj , Nαj (Sαj ), N(Sαj )) cal-
culated based on previous alpha values α1, · · · , αi−1: If
φ(αi, q, q) ≤ Fi, then we do not need to proceed the
procedure related to αi.

4 EXPERIMENTS

We evaluate the effectiveness and efficiency of our work in
comparison to representative competitive methods on four
real-datasets. In case studies, our findings reveal interesting
applications of our method to cyber-attack detection, con-
gested road network detection, and haze events detection.

4.1 Experiment Design
Datasets: 1) Water Pollution Dataset. The “Battle of the
Water Sensor Networks” (BWSN) provides a real-world
network of 12,527 nodes, and 25 nodes with chemical con-
taminant plumes that are distributed in four different areas.
The spreads of these contaminant plumes on graph were
simulated using the water network simulator EPANET that
was used in BWSN for a period of 8 hours. Each node has a
sensor that reports 1 if it is polluted; otherwise, reports 0. We
randomly selected K percent vertices, and flip their sensor
binary values, where K = 0, 4, 8, 10, 20, 30, in order to test
the robustness of subgraph detection methods to noises.

2) Event Detection Dataset: We collected 1,433,937,815
tweets (nearly 10 percent of the whole Weibo1 data) from
April 11, 2014 to January 11, 2015 (9 months). From this
dataset, we selected 0.35 million Weibo tweets, which are
relevant to the haze air pollution and posted by 51,940 users.
According to mentions in tweets and following relations, we
construct a connected user network with 158,652 edges.

1. Weibo.com, the most popular online social networking services in
China with more than 400 million users.
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3) Gov-Site Network Traffic Dataset: An Internet secu-
rity company2 provided us with 4,270,483 logs of “*.gov.cn”
web sites browsing traffic from April 23, 2015 to May 13,
2015. We derived a network with 31,241 nodes (i.e., web sites
or client IP addresses) and 59,357 edges from the traffic. For
each node, we counted the number of visitation per day.

4) Beijing-Road Network Traffic Dataset: We obtained
0.6 billion GPS records from 12,736 taxis in Beijing, China
for the whole November month, 2010, where each record
consisted of the location and speed. In this paper, we focus on
the main urban area in a rectangle region in Beijing where its
lower left latitude and longitude are 39.77◦N and 116.19◦E,
and its upper right latitude and longitude are 40.02◦N and
116.54◦E respectively. We extracted the road network with
30,157 nodes and 107,720 edges in this main urban area (i.e.,
a “node” denotes a road (e.g., Xueyuan Road), and an “edge”
denotes a cross between two roads).

Data Preprocessing: 1) For water pollution raw data,
first we generated a connected graph of sensors by its GPS
sites. We use K-nearest neighbor algorithm to generate the
minimal number of edges connecting each sensor. Second,
convert the sensor data to real numbers and compute the p-
value for each sensor at each hour. Third, in practical setting,
values of a sensor can be deviated from the true value, and
thus we add noise in the sensor data. For noise level 0.02,
we randomly select 0.02 times of sensors and set the new p-
value of the sensor equal to 1 subtracting original p-value.

2) For haze outbreak raw data consisting of Weibo data
and haze warnings issued by the state meteorological bu-
reau, we present the preprocessing steps. a) Vocabulary
Generation: 50 terms related to haze from domain experts;
b) Content Filtering: we only preserve the raw tweets
that match more than two terms from the vocabulary and
corresponding user has location information in user profile;
c) User Geocoding: we search for location information from
the users profile. d) User Graph: we generate the graph
based on the mentions in tweets; e) P-value: for day d, user
u and word w, we derive the frequency of w in u tweets
at d, and compute the p-value for w [9]. The p-value for u
at d is the average of p values of words that is reasonable
as a strong signal of haze outbreak issued with u. f) Haze
Warning: we recorded 4279 formal haze eventsrecords (level
≥ 3) from the official website3, and aggregated the records
as (“Time(YYYYMMDD)”, “Location(Province)”).

3) For the “*.gov.cn” site browsing data, first we gener-
ated a network by the visiting logs (i.e., an edge between
u ∈ V and v ∈ V if u visits v or u is visited by v). Second,
for each site v ∈ V, for each day d in the period T , we
computed the number of visitation activities countd(v) ∈ R.
Last, for each site v, on the specific day d, its p-value pd(v) is∑
t∈T,t<d δ(countt(v) > countd(v)) /

∑
t∈T δ(t < d). Each

p-value refers to the historical data.
4) For the road traffic data, we considered each road as a

“node” and each cross as “edges” between roads, where each
road has a tuple of GPS sites. Each taxi would report its GPS
site and speed every one minute. We identified the closest
road for the taxi GPS site as the road on which the taxi ran.

2. An Internet security company in China with more than 0.6 billion
users.

3. http://datacenter.mep.gov.cn/

For each road, We averaged the speeds as its speed per hour.
For each road v, on the specific day d and hour h, its p-value
phd(v) is

∑
t∈T,t<d δ(speed

h
t (v) < speedhd(v)) /

∑
t∈T δ(t <

d). We aimed to identify the roads with smaller speeds
rather than we focused on the sites with higher visitations.

Comparison Methods: The four existing representative
anomalous subgraph detection methods are Event Tree [22],
Non-Parametric Heterogeneous Graph Scan (NPHGS) [9],
Linear Time Subset Scan (LTSS) [10], and Graph Laplacian
Regularization (Graph-LR) [4]. Implementations of NPHGS
and LTSS were obtained from the authors. EventTree and
Graph-LR were replicated under the authors’ instructions
in their papers. Specifically, for EventTree, the authors refor-
mulated the subgraph detection problem as unrooted prize-
collecting Steiner tree problem and directly applied none-
root version Goemans-Williamson (G-W) algorithm [22] to
detect anomalous subgraphs. We implemented the G-W
algorithm. The Graph-LR was formulated as a convex opti-
mization problem, and we directly applied the optimization
toolbox CVXOPT to implement this algorithm. We strictly
followed the strategies recommended by the authors in
their papers to tune the related parameters. Specifically, for
EventTree and Graph-LR, we tested the set of λ values:
{0.1, 0.2, · · · , 1.0, 50, 100, · · · , 1500}. As EventTree requires
edge weights, we define the weight of an edge in the water
pipepline network as the length of the pipeline segment; and
define the weight of an edge in the user-user network of the
Weibo dataset as 1, for no better way to define edge weights
in the networks. Two nonparametric scan statistics BJ and
HC were evaluated. The parameter αmax was set to 0.15
for NPHGS and our methods. The number of seed nodes
in NPHGS was set to 5 as used in the original paper, and
the authors demonstrated that the setting of this parameter
is not sensitive. We used 10-fold cross validation to identify
the best combination of all the related parameters.

Our Methods: In this work, we designed a dynamic-
programming algorithm to the NPGS problem with tree-
shape priors (Algorithm 1). There are two versions of Algo-
rithm 1, exact and approximate algorithms, depending on
the exact or approximate solution of 0-1 MCK subproblems.
In the experiments, we focus on the approximate version
of Algorithm 1 due to its high scalability, which means we
applied the approximation algorithm [29] to solve the 0-1
MCK subproblems. We denote this algorithm as Tree-Shape-
Priors Subgraph Detection (TSPSD).

Performance Metrics: This work mainly employs four
metrics to evaluate the performance of methods. 1) preci-
sion, 2) recall. These two metrics examine the true perfor-
mance of methods in data as the noise level can be con-
trolled accurately. 3) false positive rate (FPR), 4) true positive
rate (TPR). These two metrics can be used to identify which
region our method performs better than other methods and
which region our method performs worse than others.

We denote Γ(G),G ⊆ G as the set of vertices in the
subgraph G. For a graph , the truly anomalous subgraph is
G0 ⊆ G, and for a method, the returned subgraph is G ⊆ G.
Then the precision and recall are defined as follows:

precision =
|Γ(G) ∩ Γ(G0)|
|Γ(G)|

recall =
|Γ(G) ∩ Γ(G0)|
|Γ(G0)|

For the event detection dataset, we derived the gold standard
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Method Noise Ratio (0%) 4% 8% 10% 30%
BFS-Tree (BJ) 0.94, 0.48 (0.64) 0.95, 0.47 (0.63) 0.93, 0.50 (0.66) 0.91, 0.47 (0.62) 0.78, 0.33 (0.47)

Random-ST (BJ) 0.94, 0.77 (0.84) 0.93, 0.75 (0.83) 0.95, 0.65 (0.77) 0.93, 0.59 (0.71) 0.79, 0.39 (0.53)
Steiner-T (BJ) 1.00, 0.99 (1.00) 0.98, 0.96 (0.97) 0.95, 0.92 (0.94) 0.94, 0.89 (0.91) 0.77, 0.52 (0.62)

Geodesic-SPT (BJ) 0.96, 0.85 (0.90) 0.92, 0.63 (0.75) 0.88, 0.65 (0.75) 0.85, 0.56 (0.68) 0.78, 0.38 (0.51)
EventTree 0.97, 1.00 (0.98) 0.89, 0.98 (0.93) 0.70, 0.98 (0.82) 0.42, 0.97 (0.59) 0.09, 0.90 (0.17)

NPHGS (BJ) 1.00, 0.92 (0.96) 0.99, 0.77 (0.84) 0.97, 0.50 (0.66) 0.97, 0.39 (0.55) 0.78, 0.06 (0.11)
LTSS (BJ) 1.00, 1.00 (1.00) 0.48, 0.96 (0.64) 0.34, 0.92 (0.50) 0.30, 0.90 (0.45) 0.11, 0.70 (0.20)
Graph-LR 0.93, 0.87 (0.90) 0.95, 0.43 (0.60) 0.89, 0.23 (0.37) 0.68, 0.12 (0.20) 0.97, 0.50 (0.66)

Table 1: Comparison w.r.t. different noise levels in the water pollution dataset: Precision, Recall (F-Measure). The αmax is
set to 0.15, and the budget K is set to 30.

Method FPR TPR TPR Lead Time Lag Time Run Time
(FP/Day) (Detection) (Forecast & Detect) (Days) (Days) (Minutes)

TSPSD-Steiner HC (BJ) 0.100 0.55 (0.49) 0.66 (0.66) 0.98 (0.97) 3.53 (3.54) 18 (0.3) (18 (0.3))
TSPSD-Steiner HC (BJ) 0.150 0.62 (0.61) 0.70 (0.71) 0.88 (0.82) 3.92 (4.15) 18 (0.3) (18 (0.3))
TSPSD-Steiner HC (BJ) 0.200 0.66 (0.66) 0.74 (0.74) 0.87 (0.82) 4.00 (4.15) 18 (0.3) (18 (0.3))

NPHGS HC (BJ) 0.100 0.32 (0.41) 0.47 (0.55) 0.72 (0.59) 4.35 (4.70) 3 (8)
NPHGS HC (BJ) 0.150 0.43 (0.48) 0.60 (0.71) 0.72 (0.70) 4.27 (4.40) 3 (8)
NPHGS HC (BJ) 0.200 0.50 (0.63) 0.70 (0.74) 0.71 (0.74) 4.32 (4.12) 3 (8)

EventTree 0.100 0.51 0.65 0.91 3.71 7.5
EventTree 0.150 0.57 0.68 0.70 4.40 7.5
EventTree 0.200 0.60 0.72 0.81 4.12 7.5

Table 2: Comparison between TSPSD and Other Models on the Haze outbreak dataset. The scores of HC and BJ statistics
are shown in the format: x(y), where x refers the score of HC, and y refers to that of BJ. For 18(0.3), 18 is the overall run
time and 0.3 is the detection time. The αmax is set to 0.15, and the budget K is set to 30. The value of αmax ensures that
the vertices whose p-values are less than αmax are abnormal vertices. The compact αmax will lead to a high score ϕ.

haze event from Chinese Meteorological Bureau reports,
which are structured as tuples of (date, location), where loca-
tion is defined at the province level. For each gold standard
event, we decide whether the method: 1) Had an alert in the
province within 7 days before the event, which is considered
to be “successfully predicted”; 2) Did not have an alert in
that province with 7 days before the event, but did have an
alert in that province within 7 days after the event, which
is considered to be “successfully detected”; or 3) Did not
trigger an alert in that province within 7 days before and
after the event, which is considered to be “undetected”.

4.2 Results: Subgraph Detection

Table 1 presents the comparison between the proposed
TSPSD approach and four representative methods for the
task of detecting subgraph. In this table, all measurements
were averaged over the results of the water pollution
dataset. We evaluates TSPSD and the four baseline methods
with precision, recall and F-score metrics. At noise level 0%,
4%, 8% and 10%, TSPSD with Steiner-T prior achieved the
highest F-score in detecting the contaminated water region.
Even if we introduced 10% noise into the dataset, TSPSD
detected 89% truly contaminated water region with the
precision greater than 90%. At noise level 30%, The value
of precision, recall and F-score of TSPSD with Steiner-T was
comparable to the Graph-LR method but slightly lower.
From the overall performance in all different noise level,
TSPSD with Steiner-T performs more stable than the Graph-
LR method. In other hands, mostly F-scores of TSPSD are
higher than the four methods, and F-score considers both
the precision and the recall to evaluate a method. TSPSD
with the four tree shape priors under noise level 30% has
a higher F-score than the baselines EventTree, NPHGS and
LTSS. We compare TSPSD with each other TSPSD by differ-

Figure 4: The average nonparametric scan statistic scores for
each problem SKα in (13). (a) shows the BJ score for each
tree prior in Water Pollution Dataset (W) and Haze Event
Detection Dataset (H); and (b) shows the HC score.

ent versions tree shape priors and nonparametric statistics
BJ and HC, and find that TSPSD achieves best by Steiner-T.

4.3 Results: Event Detection

For comparable false positive rates, TSPSD achieved the
highest forecasting TPR and detection TPR than the two
baseline methods in Table 2. The lead time represents how
long we need to predict Haze event before it actually occurs.
Our method predicting haze events is earlier than baselines,
and that means the larger lead time. Haze events as natural
events occur usually without exceeding a half day in China.
However social events (e.g., protest events), often have
trigger subevents and are driven by public sentiments, and
can be potentially forecasted with a large lead time (e.g., 1 to
2 weeks). It is difficult to predict Haze events before a long
time for Haze events do not have these factors. For the lag
time, we use the less time to detect Haze events, and that
means the less lag time. Our approach performs better than
baselines. Although the run time of TSPSD was little higher
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Run Time BFS Random Steiner Geo
(Minutes) Tree ST Tree SPT

OPT 0.11 (0.11) 0.93 (0.10) 0.77 (0.08) 0.62 (0.11)
NON-OPT 3.16 (3.15) 3.89 (2.81) 2.89 (2.01) 3.79 (3.00)
RunTime EventTree NPHGS LTSS Graph
(Minutes) Laplacian

13.10 1.82 0.93 24.61

Table 3: The average run times of our proposed and baseline
methods on the Water pollution dataset. The run time of
our proposed method consists of two parts such as 0.93
(0.08), where 0.93 is the overall run time (including tree
generation and subgraph detection) and 0.08 is the run time
of the subgraph detection step. Our proposed method has
two versions: 1) NON-OPT: Algorithm 1 (tree-shape-priors
subgraph detection); 2) OPT: Algorithm 1 + optimizations
(Subsection 3.4). We implemented both BJ and HC statistics,
and their run times are equal.

than baseline methods, the time of tree generation consumes
major time in overall time.

4.4 Parameter Tuning

For examining the sensitivity of selecting values of K, we
plot each score F (SKα ) for K = 0, · · · , 30 in Figure 4 (a)
and (b). We can observe that F (SKα ) is stable after K = 20.
From the scores, we can see that our approaches TSPSD-
Steiner-T HC(BJ) perform best. In the Haze data set, the
fewer connected users triggering Haze warnings led to the
less score for BJ and HC. The results in Figure 4 (a) and
(b) show that most of abnormal vertices are connected from
each other with a small number of normal vertices. From
Figure 2, we can observe that the different α values lead to
the different scores ϕ. From Problem (11), our approaches
are examined in each significant level α (i.e., α ≤ αmax).
We select a compact αmax to ensure that the p-values of
abnormal vertices are less than αmax. In the experiments,
the budget K and αmax are set to 30 and 0.15 respectively.

4.5 Runtime: Tree Shape Priors

Our proposed methods based on the four tree shape priors
are compared to the four baseline methods by run time, with
results shown in Table 3. All measurements were averaged
over the run time of the Water Pollution Dataset. Run time of
TSPSD was comparable to other methods but slightly higher
in Random-St and Steiner-Tree with NON-OPT because it
recomputes π−vl , π+v

l , nvl , Cvl in Algorithm 3 redundantly.
When we apply optimizations (Subsection 3.4), the run time
is less than NPHGS and LTSS methods. We note that the
speed of detecting subgraph by TSPSD with OPT is faster 25
times than TSPSD without it. TSPSD with OPT (Subsection
3.4) performs better than all the four baseline methods.

4.6 Case Study in Cyber Traffic Networks

We took on the consecutive two days, May 5 and 6, 2015
in the gov-site network traffic dataset to demonstrate the
performance of our method. The results for the methods
TSPSD-steiner BJ (HC) are similar. We illustrated the de-
tected cyber attack networks with major differences for

TSPSD-steiner BJ (HC) in Figures 5 and 6. We just show
the result by TSPSD-steiner BJ in Figure 7 on May 6, 2015.

On May 5, 2015, for TSPSD-steiner BJ (HC), the attacked
sites “www.saic.gov.cn”, “www.audit.gov.cn”, “bbs.xyw.gov.cn”,
“www.jgjy.gov.cn” and “news.xyw.gov.cn” were detected. We
also discovered the major attacking sources “X.X.171.42”,
“X.X.148.207” and “X.X.42.50”. The site “www.saic.gov.cn”
was attacked by the two major types of actions, Dedecms
Attack (e.g., from the attacking source “X.X.148.207”) and
scanner actions. The site “www.audit.gov.cn” was attacked by
three sources with Dedecms Attack, Get SQL Inject, and Up-
load Webshell Attack. The site “bbs.xyw.gov.cn” was attacked
by the source “X.X.42.50” with Dedecms Attack and Get SQL
Inject. The sites “www.jgjy.gov.cn” and “news.xyw.gov.cn”
were attacked by the source “X.X.42.50” with the same
actions. Especially, the site “xyw.gov.cn” was attacked by
the source “X.X.83.34” with many types of attack actions,
such as, Infomation Leak Attack, Backup File Attack, Post SQL
Inject, Get SQL Inject, scanner action, GET XSS ATTACK,
Struts2 Attack, PHP Injection Attack. These attack actions
were detected by the two methods. Undoubtedly the source
“X.X.83.34” is a typical cyber attacker. TSPSD-steiner BJ
detected more attack actions than TSPSD-steiner HC.

On May 6, 2015, we illustrated the detected cyber at-
tack network in Figure 7. There are three main attack
sources “X.X.47.149”, “X.X.217.93”, “X.X.237.185”, and two
main attacked sites “www.saic.gov.cn”, “www.xyw.gov.cn”.
The site “www.saic.gov.cn” was attacked by “X.X.47.149”
with Upload Webshell Attack, and “X.X.217.93” with Dedecms
Attack, scanner action. The site “www.xyw.gov.cn” was at-
tacked by “X.X.47.149” and “X.X.217.93” with the same
actions. We observed that the two sites “www.saic.gov.cn”
and “www.xyw.gov.cn” were also attacked on May 5, 2015.
The site “www.saic.gov.cn” in these two days attracted
more attacks from many sources. Especially, the sites
“xyw.gov.cn” was attacked by “X.X.83.34” with many types
of attack actions, such as, Infomation Leak Attack, Backup
File Attack, Post SQL Inject, Get SQL Inject, scanner action,
GET XSS ATTACK, Struts2 Attack, PHP Injection Attack.
The same attack also occurred on May 5, 2015. There is
another source “X.X.22.194” attacked “www.xcghj.gov.cn”,
“www.xinyimzj.gov.cn” and “www.xjgt.gov.cn” with many
same types of attack actions besides Local File Inclusion
Attack, Remote Code with Expression Language Injection Attack,
Command Injection Attack, Code Injection Attack, and IIS Short
Filename Attack. Undoubtedly, the sources “X.X.22.194” and
“X.X.83.34” are the typical cyber attackers. Our methods can
detect the cyber attack network in the large network through
the three cases in Figure 5, 6 and 7.

We have two interesting findings: one source attacks
more sites with fewer attack types, and reversely one source
attacks fewer sites with more attack types. For example, the
detected main sources, such as, “X.X.171.42”, “X.X.148.207”,
“X.X.47.149”, “X.X.217.93”, attacked many sites with at
most 2 types of attack actions, such as, Upload Webshell At-
tack, Dedecms Attack. However, for the sources “X.X.22.194”
and “X.X.83.34”, they attacked at most 3 sites with at
least 8 types of attack actions. These findings imply that
the connected anomalous subgraphs may have different
attack patterns. Without considering the specific form of
anomaly distribution in the traffic networks, our nonpara-
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Figure 5: Attack case on May 5, 2015 by TSPSD-steiner BJ
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Figure 6: Attack case on May 5, 2015 by TSPSD-steiner HC
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Figure 7: Attack case on May 6, 2015 by TSPSD-steiner BJ. There are attack actions if they are colored with red, and
otherwise there are no attack actions.



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2868097, IEEE
Transactions on Knowledge and Data Engineering

12

Figure 8: Congested roads (red color) on Novem-
ber 27, 2010, 07:00 AM - 08:00 AM, Saturday.

Figure 9: Congested roads on November 28, 2010,
07:00 AM - 08:00 AM, Sunday.

Figure 10: Congested roads on November 29, 2010,
07:00 AM - 08:00 AM, Monday.

Figure 11: Congested roads on November 30, 2010,
07:00 AM - 08:00 AM, Tuesday.

metric methods have detected the different attack patterns.

4.7 Case Study in Social Networks

We randomly selected one day (i.e., November 27, 2014) to
forecast or detect Haze events in the event detection dataset
in Figure 12. We first computed the p-value for each user on
this day. In the user mentioned network, we employed our
methods TSPSD-steiner BJ and HC to detect the user groups
(i.e., connected subgraph) about Haze events. In the groups,
each user was connected to a location (i.e., province).

The report [31] stated that “the haze events occurred within
the central and eastern China, south regions of north China,
north regions of Huang-huai area in China, and central Shaanxi
plain between November 24-27, 2014, where the haze regions
covered about one-third of China.” In Figure 12, the lower
network is a province network in China, where the blue
vertices showed the wrong alerts (e.g., Shanghai), however,
the yellow vertices showed the correct alerts (e.g., Beijing,
Hebei, Henan). From November 24 to November 27, 2014,
the Air Quality Indexes (AQI) in Beijing are 103, 177, 279
and 101 respectively (e.g., the value AQI 279 corresponds to
the air quality level 5). We could observe that the subgraph
detected by TSPSD-steiner HC connected to blue vertices

(wrong alerts) are apparently less than the subgraph de-
tected by TSPSD-steiner BJ. This observation corresponds to
the results in Table 2. TSPSD-steiner HC performs better
than TSPSD-steiner BJ. In this case, our methods could
successfully detect or predict the Haze events in the region
through social media. The main factors to our methods are
the statistic (e.g., BJ and HC) and the way of computing p-
value for each node. The main benefit of our nonparametric-
type TSPSD methods is that there are hardly any parameters
to be tuned. Although the significant level α is predefined
(e.g., 0.15), we have proved that our result is optimal among
different significant levels (i.e., ≤ α).

4.8 Case Study in Beijing Road Traffic Networks
We took on the consecutive four days, November 27, 28,
29 and 30, 2010, morning peak (07:00 AM - 08:00 AM), in
the detected regions in Beijing, China, to demonstrate the
performance of our method TSPSD-steiner BJ on congested
road network detection.

The report [32] issued by the Beijing transport institute
summarized the main congested roads in the morning peak
(i.e., 07:00 AM - 09:00 AM, “the south roads for east and west
second ring road; the north second ring road; the south roads for
east and west third ring road; the roads adhere to Wanshou road”).
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Figure 12: Haze events from Nov 27, 2014, in China. Within
the 7 day window before and after that day, a yellow vertex
refers to a successful forecast or detection; a blue vertex
indicates an alert without a GSR record; Other color vertices
consist of user subgraphs detected by TSPSD-steiner BJ
or HC methods. The size of yellow and blue vertices is
proportional to the count of users connected to them.

On November 27 and 28, 2010 (Saturday and Sunday,
weekend), we detected the congested roads with red color
in Figures 8 and 9. In Figure 8, we can observe that the
main congested roads are located on the region inside the
second ring road, where there are many attractions, such as
the Palace Museum. At the weekend, many citizens drove
to these places for entertainments, which caused to a large
traffic in this region. In Figure 9, the main congested roads
are destined to the Capital airport. There are occasionally
associated with a fast growing traffic to the Capital airport.

On the weekday (e.g., November 29 and 30, 2010, Mon-
day and Tuesday), the congested roads showed a significant
period pattern that the congested roads got to the traffic
peak by the report [32]. In Figure 10, we can observe that the
congested roads are located in the west second ring road,
Xi Zhi Men regions, the north third ring road, Wanshou
road, and the west fourth ring road. In Figure 11, the
congested roads were still the west fourth ring road and
the Wanshou road, where its some nearby roads became
congested in this time. The congested roads are consistent
with the report [32]. We can observe that the main congested
roads (e.g., the west fourth ring road and the Wanshou road)
are not changed in this time for many citizens settled in
the two districts (i.e., Mentougou, Fangshan), and drove to
downtown for working through these roads.

From the report [32], we know that the road traffic at
the weekend is remarkable larger than at the weekday. At
the weekend, each road is possible to be congested, and the
parametric methods will detect a large congested region for
there is not a specific form of distribution to capture the
variations of roads. However, our method TSPSD does not
consider the specific distribution form of roads and has few
parameters to be tuned. The results in Figure 10 and 11 also
correspond to the congested roads in the official report [32].

4.9 Performance Loss due to Tree Shaped Priors

As our nonparametric approach does not assume any
specific forms of distributions for normal and abnormal

(b) Random Geometric Graph(a) 

Figure 13: (a) shows the difference between BJ scores of
true subgraphs and scores achieved by our approach TSPSD
(BJ) with the four tree priors on random geometric graphs;
and (b) shows an example of random geometric graphs
(e.g., red circle nodes denote the detected subgraph by
TSPSD-Steiner-T, and yellow square nodes denote the true
subgraph, where the smaller p-value is indicated by darker
red, but the larger p-value is indicated by darker blue).

vertices, we conducted a simulation test to evaluate the
performance loss of our approach due to the tree shaped
priors. We randomly generate the graphs with 64 nodes,
and randomly choose anomalous connected subgraphs with
the size ranging from 1 to 32. With the fixed noise level
σ2 = 1, the null hypothesis is that node values follow the
normal distribution N (0, 1), and the alternative hypothesis
is that node values follow N (µ, 1) (e.g., µ = 1) [6]. For
each node, we randomly generate a sample whose size is 30
and compute its p-value. The simulation test with the same
setting K = 30, αmax = 0.15 is carried out 300 times.

From Figure 13(a), we can observe that scores of our
approaches with Steiner and Geodesic tree priors are more
closer to the true scores than the other approaches. With the
size of true subgraph increasing, our approaches perform
not good for the true subgraph in a tree spanned from a
prior may introduce normal nodes. We randomly choose
a test with 17 true nodes in Figure 13(b). Our approach
TSPSD-Steiner-T detected all of the true nodes without false
detected nodes, even though a node (i.e., its color is close to
white) has a larger p-value.

5 CONCLUSION AND FUTURE WORK

With provable guarantee based on tree shaped priors, a
novel approximate algorithm is proposed to address the
NPGS problem, which is reformulated as a sequence of B-
PCST subproblems. Given a graph, subsets of vertices are
assembled into bags, and the bags are assembled into a tree.
The maximal size of bags is the tree-width, which describes
how “tree-like” the structure of graph is [33]. For future
work, we will employ the method (i.e., tree-decomposition) to
measure how well a graph is approximated by a tree. Our
work can be extended to other applications (e.g., Bitcoin
fraud detection, graph-structured optimization methods).
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