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Structured Sparse Learning
Given M(M) = {w : supp(w ) ∈M}, the structured sparse
learning problems can be formulated as

min
w∈M(M)

F (w ) :=
1

n

n∑
i=1

fi(w ), where

I F (w ) is a convex loss such as least square,
logistic loss, . . .

IM(M) models structured sparsity such as
connected subgraphs, dense subgraphs, and
subgraphs isomophic to a query graph, . . .
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Figure: Weighted Graph Model M = {S : |S | ≤ 3, S is connected } Hegde
et al. (2015a).

To solve above problem under sparsity constraint, Nguyen et al.
(2017) proposed Stochastic Iterative Hard Thresholding
(StoIHT). At time t, StoIHT choose ξt from [n] with
probability pξt and project w t onto a subspace

w t+1 = P(w t − ηt∇fξt(w t), Γt),

where the orthogonal projection P(·, Γ) is defined as

P(w , Γ) := arg min
w ′∈R(Γ)

‖w −w ′‖2
2.

Why stochastic?

I More steady

I Less computation per-iteration

Two issues of StoIHT

I Cannot handle graph-structured constraint

I Ideally, ∇fξt(w t) also needs to be in a subspace

Our Algorithm
The hybird of Nguyen et al. (2017) and Hegde et al. (2016).

Algorithm 1 GraphStoIHT
1: Input: ηt, F (·),MH,MT
2: Initialize: w 0 and t = 0
3: for t = 0, 1, 2, . . . do
4: Choose ξt from [n] with prob. pξt
5: bt = P(∇fξt(w t),MH)
6: w t+1 = P(w t − ηtbt,MT )
7: end for
8: Return w t+1

Why projection bt = P(∇fξt(w t),MH) ?

I Both of them solve the same
projection problem

I Sparsity is both in primal
space and dual space

I Remove some noisy directions
at the first stage 30 60 90 120 150 180
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Convergence Analysis
Define the Bregman divergence of f as

Bf (w ,w ′) = f (w )− f (w ′)− 〈∇f (w ′),w −w ′〉
Two assumptions in M(M):

I fi(w ): β-Restricted Strong Smoothness
F (w ): α-Restricted Strong Convexity

I Efficient Approximated projections:
• P(·,MH) with approximation factor cH
• P(·,MT ) with approximation factor cT

β 2
‖w
−
w

′ ‖2
B
f
(w
,w

′ )

α
2 ‖w −

w ′‖ 2

Theorem 1 (Linear Convergence) Let w 0 be the start point
and choose ηt = η, then w t+1 of Algorithm 1 satisfies

Eξ[t]‖w t+1 −w ∗‖ ≤ κt+1‖w 0 −w ∗‖ +
σ

1− κ,
where η, τ ∈ (0, 2/β) and

κ = (1 + cT )
(√

αβη2 − 2αη + 1 +
√

1− α2
0

)
,

α0 = cHατ −
√
αβτ2 − 2ατ + 1, β0 = (1 + cH)τ,

σ =

(
β0

α0
+

α0β0√
1− α2

0

)
Eξt‖∇I fξt(w

∗)‖ + ηEξt‖∇I fξt(w
∗)‖.

Graph Sparse Linear Regression
Given a design matrix X ∈ Rm×p and corresponding observed
noisy vector y ∈ Rm that are linked via the linear relationship

y = Xw ∗ + ε,

where ε ∼ N (0, σ2Im). To estimate w ∗, consider the least
square loss and formulate it as

arg min
supp(w )∈M(M)

F (w ) :=
1

n

n∑
i=1

n

2m
‖XBi

w − yBi
‖2,

where m observations have been partitioned into n blocks,
B1,B2, . . . ,Bn. Let α = 1− δ, β = 1 + δ.

Algorithm κ

GraphIHT (1 + cT )
(√

δ + 2
√

1− δ
)√

δ

GraphStoIHT (1 + cT )
(√

2
1+δ +

2
√

2(1−δ)

1+δ

)√
δ

κ of GraphIHT is controlled by O(
√
δ · 2(1 + cT )) while for

GraphStoIHT, κ is controlled by O(
√
δ · 3
√

2(1 + cT )). To
obtain κ < 1, δ ≤ 0.0527 for GraphIHT while δ ≤ 0.0142 for
GraphStoIHT. The gap between the two κ is mainly due to
the randomness introduced in our algorithm.

Graph Sparse Logistic Regression
Given a dataset {xi , yi}mi=1, the graph logistic regression is
formulated as the following problem

arg min
supp(w )∈M(M)

F (w ) :=
1

n

n∑
i=1

n

m

m/n∑
j=1

h(w , ij) +
λ

2
‖w‖2,

where h(w , ij) = log(1 + exp (−yij · 〈xij,w〉)). Problem above
has an important application on gene pathway analysis. If each
sample ai is normalized, then F (x) satisfies λ-RSC and each
fi(x) satisfies (α + (1 + ν)θmax)-RSS. The condition of κ < 1 is

λ

λ + n(1 + ν)θmax/4m
≥ 243

250
,

with probability 1− p exp (−θmaxν/4), where

θmax = λmax(
∑m/n

j=1 E[aija
T
ij

]) and ν ≥ 1.

Experiments

Simulation Dataset:

I Each entry√
mXij ∼ N (0, 1)

I Supp(w ∗) is generated
by random walk

I Entries of w ∗ from
N (0, 1)

I Weighted Graph Model

IUpper Right: Probability of recovery on
synthetic dataset. The probability of recovery
is a function of number of observations m.

I Lower Left: The left part illustrates the
estimation error as a function of epochs for
different choices of b. When b = 180, it
degenerates to GraphIHT (the dashed
line). The right part shows the estimation
error as a function of iterations for different
choices of η.

I Lower Right: Robustness to noise ε. The
number of observations required is a function
of different block sizes.
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Real image dataset:

I IHT (Blumensath and Davies, 2009)

I StoIHT (Nguyen et al., 2017)

INIHT (Blumensath and Davies, 2010)

ICoSaMP (Needell and Tropp, 2009)

IGraphIHT (Hegde et al., 2016) + WGM

IGraphCoSaMP (Hegde et al., 2015b)

Experimental settings:

I Resized real images (Hegde et al., 2015b)

I η of IHT-based in {0.2, 0.4, 0.6, 0.8}
I b of StoIHT-based in {m/5,m/10}
I Tune b and η on 100 observations.

IA used here is Gaussian matrix

Two experimental conclusions:

I SGD-based methods are more stable

I Capture the graph-structured sparsity
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Breast Cancer Dataset:

I 295 samples with 78 positives (metastatic) and 217 negatives
(non-metastatic) provided in Van De Vijver et al. (2002).

I PPI network with 637 pathways is provided in Jacob et al. (2009).

Four `1/`2 mixed norm-based algorithms:

I `1-Pathway uses pathways as groups

I `1/`2-Pathway uses pathways as groups

I `1-Edge uses use edges as groups

I `1/`2-Edge uses use edges as groups

Algorithm Cancer related genes ‖w t‖0 AUC

GraphStoIHT BRCA2, CCND2, CDKN1A, ATM, AR, TOP2A 051.7 0.715
GraphIHT ATM, CDKN1A, BRCA2, AR, TOP2A 055.2 0.714

`1-Path BRCA1, CDKN1A, ATM, DSC2 061.2 0.675

StoIHT MKI67, NAT1, AR, TOP2A 059.6 0.708

`1/`2-Edge CCND3, ATM, CDH3 051.4 0.705

`1-Edge CCND3, AR, CDH3 039.9 0.698

`1/`2-Path BRCA1, CDKN1A 147.6 0.705

IHT NAT1, TOP2A 067.9 0.707

Conclusion and Future Work
I We proposed GraphStoIHT.

I It enjoys a linear convergence property.

I Two real-world applications.

In future, it would be interesting to see if one can apply the variance
reduction techniques such as SAGA (Defazio et al., 2014) and
SVRG (Johnson and Zhang, 2013) to GraphStoIHT.

Code & Datasets
I Code & Datasets can be found at GitHub:

https://github.com/baojianzhou/graph-sto-iht

I Email: bzhou6@albany.edu

IBaojian Zhou is open to postdoc positions.

https://github.com/baojianzhou/graph-sto-iht
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