Stochastic Iterative Hard Thresholding for Graph-Structured Sparsity Optimization

Baojian Zhou^{1,2}, Feng Chen¹, and Yiming Ying²

¹Department of Computer Science, ²Department of Mathematics and Statistics, University at Albany, NY, USA

Structured Sparse Learning

Given $\mathcal{M}(\mathbb{M}) = \{ w : \operatorname{supp}(w) \in \mathbb{M} \}$, the structured sparse learning problems can be formulated as

$$\min_{oldsymbol{w}\in\mathcal{M}(\mathbb{M})}F(oldsymbol{w}):=rac{1}{n}\sum_{i=1}^nf_i(oldsymbol{w}),\,\, ext{where}$$

 \succ F(w) is a convex loss such as least square, logistic loss, . . .

 $\triangleright \mathcal{M}(\mathbb{M})$ models structured sparsity such as connected subgraphs, dense subgraphs, and subgraphs isomophic to a query graph, ...

Figure: Weighted Graph Model $\mathbb{M} = \{S : |S| \leq 3, S \text{ is connected }\}$ Hegde et al. (2015a).

To solve above problem under sparsity constraint, Nguyen et al. (2017) proposed Stochastic Iterative Hard Thresholding (STOIHT). At time t, STOIHT choose ξ_t from [n] with probability p_{ξ_t} and project w^t onto a subspace

$$\boldsymbol{w}^{t+1} = P(\boldsymbol{w}^t - \eta_t \nabla f_{\xi_t}(\boldsymbol{w}^t), \boldsymbol{\Gamma}^t),$$

where the orthogonal projection $P(\cdot, \Gamma)$ is defined as

$$\mathbb{P}(oldsymbol{w}, oldsymbol{\Gamma}) := rgmin_{oldsymbol{w}' \in \mathcal{R}(oldsymbol{\Gamma})} \|oldsymbol{w} - oldsymbol{w}' \|_2^2$$

Why stochastic?

More steady

Less computation per-iteration

Two issues of STOIHT

- Cannot handle graph-structured constraint
- \blacktriangleright Ideally, $\nabla f_{\xi_t}(w^t)$ also needs to be in a subspace

Our Algorithm

The hybird of Nguyen et al. (2017) and Hegde et al. (2016). **Algorithm 1** GRAPHSTOIHT

- : Input: $\eta_t, F(\cdot), \mathbb{M}_{\mathcal{H}}, \mathbb{M}_{\mathcal{T}}$
- 2: Initialize: w^0 and t = 0
- 3: for t = 0, 1, 2, ... do
- 4: Choose ξ_t from [*n*] with prob. p_{ξ_t}
- 5: $\boldsymbol{b}^t = \mathrm{P}(\nabla f_{\xi_t}(\boldsymbol{w}^t), \mathbb{M}_{\mathcal{H}})$
- 6: $\boldsymbol{w}^{t+1} = \mathrm{P}(\boldsymbol{w}^t \eta_t \boldsymbol{b}^t, \mathbb{M}_T)$
- 7: end for
- 8: **Return** w^{t+1}

Why projection $\boldsymbol{b}^t = P(\nabla f_{\xi_t}(\boldsymbol{w}^t), \mathbb{M}_{\mathcal{H}})$?

- ► Both of them solve the same projection problem
- Sparsity is both in primal space and dual space
- Remove some noisy directions at the first stage

has an important application on gene pathway analysis. If each sample a_i is normalized, then F(x) satisfies λ -RSC and each $f_i(\mathbf{x})$ satisfies $(\alpha + (1 + \nu)\theta_{max})$ -RSS. The condition of $\kappa < 1$ is 243

$$\overline{\lambda + n(1+\nu)\theta_{max}/4m} \geq \overline{250}$$
with probability $1 - p \exp(-\theta_{max}\nu/4)$, where
 $\theta_{max} = \lambda_{max}(\sum_{j=1}^{m/n} \mathbb{E}[a_{i_j}a_{i_j}^{\mathsf{T}}]) \text{ and } \nu \geq 1.$

	<u>ት</u> ቀ	<u> </u>	<u>ት</u> ትና	<u>ት</u> ቀ	$\dot{\mathbf{Q}}$	<u>-</u>
88	566	35		566	200	56
$\phi \phi \phi$	<u>ት</u>	<u> </u>	<u>ት</u> ትና	<u>ት</u>	$\frac{1}{2}$	<u></u>
¥77	555	¥Υ	77 7	555	¥¥	57
$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{2}$	$\frac{1}{2}$	$\dot{\mathbf{x}}$	χ¢.
ĞĞ	ŞŲ∳	фф	┋┋	Şфф	-ĂĂ	ŞΫ
200				\mathcal{C}	$\frac{1}{2}$	
Ϋ́Υ	$\{ \Phi \Phi \}$	фф	$\mathbf{\overline{\Phi}}$	₩	фф	ξĄ
	\mathbf{F}	$\frac{1}{2}$	$\frac{1}{2}$	\mathbf{F}	-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	
III		ΙI	III		ΙI	II

 $\ge \ell^1/\ell^2$ -PATHWAY uses pathways as groups $\triangleright \ell^1$ -EDGE uses use edges as groups

 $> \ell^1/\ell^2$ -EDGE uses use edges as groups

Algorithm	Cancer related genes	$\ \boldsymbol{w}^t\ _0$	AUC
GRAPHSTOIHT	BRCA2, CCND2, CDKN1A, ATM, AR, TOP2A	051.7	0.715
GraphIHT	ATM, CDKN1A, BRCA2, AR, TOP2A	055.2	0.714
ℓ^1 -Path	BRCA1, CDKN1A, ATM, DSC2	061.2	0.675
StoIHT	MKI67, NAT1, AR, TOP2A	059.6	0.708
ℓ^1/ℓ^2 -EDGE	CCND3, ATM, CDH3	051.4	0.705
ℓ^1 -EDGE	CCND3, AR, CDH3	039.9	0.698
ℓ^1/ℓ^2 -Path	BRCA1, CDKN1A	147.6	0.705
IHT	NAT1, TOP2A	067.9	0.707

In future, it would be interesting to see if one can apply the variance reduction techniques such as SAGA (Defazio et al., 2014) and SVRG (Johnson and Zhang, 2013) to GRAPHSTOIHT.

Code &	٢
https:/	/
Email:	b
Baojia	r

Code & Datasets

Datasets can be found at GitHub: /github.com/baojianzhou/graph-sto-iht bzhou6@albany.edu

an Zhou is open to postdoc positions.