Lecture ⁰¹ Introduction to numerical computation Lectures Baujian Zhou Email : bjzhou @ fendan.edu.cn Books a Numerical analysis (3rd), Timothy Saner

Matrix Computation Listh), Gene

Some notations:
\n
$$
ClQ_3
$$
: set of all functions that are continuous on IR.
\n ClQ_3 : set of all f' continuous on IR.
\n $Cl^{n}[a,b]$: f^{(m} exists and continuous.
\n $Cl^{n}[1]$: norm
\n $Cl_{2} : L^{n}Cl^{n} with any numbers\n $Cl_{2} : L^{n}Cl^{n} with any numbers$
\n $Cl_{2} : L^{n}Cl^{n} with any numbers$
\n $Cl_{2} : L^{n}Cl^{n} with any numbers$
\n $Cl_{2} : L^{n}Cl^{n} with any odd in comp.$$

problem1 : How to calculate $\sqrt{2}$. Solution Babylonian method Let the numerical value of $\sqrt{2}$ be γ . \Rightarrow $\sqrt{2}$ \Rightarrow $\sqrt{2}$ 1. $x = \sqrt{2}$ ≤ 2 $x^2 = 2$ ≤ 2 $\frac{\pi}{2} = \frac{\pi}{2}$ \Rightarrow $\frac{x}{2} + \frac{x}{2} = \frac{x}{\nu} + \frac{1}{x} =$ \Rightarrow $\frac{x}{2} + \frac{1}{x}$ We can grees a value of x., î.e., x. Hoping that $\frac{\lambda v}{2} + \frac{1}{\lambda_0}$ is getting closer to $\sqrt{2}$. Let $\Lambda_i = \frac{\chi_i}{2} + \frac{1}{\chi_0}$, repeat this ... For example, $\sim x_0 = 1, \propto \sqrt{2} \frac{1}{2} + 1 = 1.5$ \times is letter than x_0 $\sqrt{2}$ $\frac{x_1}{2} + \frac{1}{x_1} = \frac{15}{2} + \frac{2}{3} \approx 1.4166 - x_1 = x_0$ R $R1$ why does to $=$ $\frac{X_t}{X_t} + \frac{1}{X_t}$ work?

Illustration of Bubylosian aprechad

Problem 2: Predict the ample.
\nGiven .
$$
v_z
$$
 speed of shell
\n v_z speed of shell
\n v_z speed of shell
\n $v_{\text{out}} = 9.8$
\nSwell from A to B.
\n $v_{\text{in}} = v_{\text{out}} - g_{\text{out}} - v_{\text{out}} = 0$:
\n $v_{\text{out}} = v_{\text{out}} - g_{\text{out}} - v_{\text{out}} = 0$:
\n $v_{\text{out}} = v_{\text{out}} - g_{\text{out}} - v_{\text{out}} = 2 + v_{\text{out}}$
\n $v_{\text{out}} = 2 - \frac{v_{\text{out}}}{g} - v_{\text{out}} - v_{\text{out}} = 2 + v_{\text{out}}$
\n $d = 2 - \frac{v_{\text{out}}}{g} - v_{\text{out}} - v_{\text{out}} - v_{\text{out}} = 2 + v_{\text{out}}$
\n $d = 2 - \frac{v_{\text{out}}}{g} - v_{\text{out}} - v_{\text{out}} - v_{\text{out}} = 0$

Problem 3 PageRank Problem ranking Web pages $\frac{1}{\sqrt{\frac{1}{1-\frac{$ ϕ directed graphs adjacency matrix A degree marriex D. stochestic meurix $A^T D^{-1}$. To same: $\pi = C\partial A^T D^4 + \frac{1-\partial}{n}E^T D^T.$

Machine representestion of read numbers Examples: $\pi, e, me \approx 4.1 \times 10^{-31}$, $c = 2.9 \times 10^{8}$ atoms size lu 282 Computer deal with munichs store into a nord. Naine iden: Fixed-print avithmetic Interser prince Fractional part $\frac{1}{\sqrt{38}}$ word.
 $\frac{1}{\sqrt{38}}$ weeds \approx 260 bits of integers party The needs and it's but many digits in -fractional prové. S_{0} , fixed-prime is a bod idea!

Double precision: $x=1, 1.10000} x2^{0}$ $x=(+2^{-52}+1.10...71\times2^{\circ}.1)$ pert float print =) We can $2^{-52} = 2$ work. Ronnalin — chopping: bined. $x = \pm 1.16 - b_{52} + 0.06 + 0.02$ If $x<0$, then b_{33} remond will make $\kappa > 0$ always. 14×50 , then $x \rightarrow 0$ always

$$
\frac{1}{x^{00}} = 0
$$
 $\frac{1}{x^{00}} = \frac{1}{x^{00}}$
\n
$$
\frac{1}{x^{00}} = 0
$$
 $\frac{1}{x^{00}}$
\n
$$
\frac{1}{x^{00}} = 0
$$
 $\frac{1}{x^{00}}$
\n
$$
\frac{1}{x^{00}} = \frac{1}{x^{00}}
$$

\n
$$
\frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 1, \frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 1, \frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0, \frac{1}{x^{00}} = 0
$$

\n
$$
\frac{1}{x^{00}} = 0, \frac{1}{x^{0
$$

How to measure the emr: absolute erner: $|x_c - x|$ $\begin{array}{rcl}\n\text{Value} & \text{Conv} & \text{if } & \$ If $X E|R^n$ or $X E[k]$ ^{nxn}, use. $||x-y||$ or $||x-y||_{op}$. what if $x=0$, no worry for saving muhons. Sime xxx, there is no rounding enter: 5 : relative environs is v. Thomorem: $\frac{|flun-d|}{2}\leq\frac{1}{2}\frac{2}{nab}.$ Unit round off $1 + [Cy \psi] - 9.4 = 0.2 \times 2^{-49}$ $\frac{10.2 \times 2^{-49}}{4.1} = \frac{8}{47} \times 2^{-52} \le \frac{1}{2}$ Errech. $|f|$ $f(4)$ 9.4 9.4

Proof:

\nW1.16r.,
$$
lim_{x} x \times v
$$
, we now to *mem*

\n
$$
\frac{x - f(n)}{x} \qquad W_{e} \text{ assume } x = q \times z^{m}
$$
\n
$$
q = 1. b_{1} \cdot b_{1} \cdot b_{1} b_{1} b_{1} \cdot b_{1} \cdot b_{1} \cdot b_{1} \cdot c_{1} \cdot d_{1}
$$
\nThus $lim_{x \to 0} x \leq \frac{1}{2} [ln \frac{1}{2} \cdot \frac{$

$$
log-sum-exp-enick:
$$

 $log \pi_{i} = log \frac{exp(x_{i})}{\sum_{j=1}^{n}exp(x_{j})}$

$$
log Tv_{i} = x_{i} - log \frac{1}{s} log v_{i} x_{j}
$$

\n $log sum exp v_{i} = log \frac{2}{s^{2}} exp v_{j} + b - b$
\n $= b + log \frac{2}{s^{2}} exp (x_{j} - b)$
\n $b = max \{x_{i}, i = 1, 2, ..., n\}$

This trick can avoid creefton.

Bisectaon mechod: Given: [a,b], f, E. Souch Phort 12 iscert on yves as the following: fov $t: 0, 1, 2, ...$ $\begin{array}{ccc} \mathcal{L} & = & \mathcal{Q} + b \\ & = & \searrow \end{array}$ $if f(c) = 0$ return C $if f(c) . f(c) < b then$ $\int_{\mathcal{D}} \mathcal{I} \mathcal{L}$ e Sen $\begin{array}{c} \n\bigcup_{i=1}^{n} C_i \n\end{array}$

return C

 $w_{1}+b_{0}$ $\begin{cases} a_{0}=a_{1} \\ b_{0}=b_{1} \end{cases}$ De From analysis:

Bisent generots: $[a_0,b_0]$, $[a_1,b_1]$, ..., $[a_n,b_n]$, whene

 $u_0 \in u_1 \in a_2$ $\cdots \in a_n \in b_n \in b_{n-1}$ $\cdots \in b_{n-1} \in b_n$ and. $b_{n+1} - a_{n+1} = \frac{1}{2} c b_n - a_{n}$ ($n_{>0}$)
L'Recoun erregnatione, it cuts [an, b_n] in haff. Recursivelly,
bn- $a_n = 2^{-n}cb_0 - a_0$). Thus, $Lim_{n\to\infty}b_{n}-lim_{n\to\infty}a_{n}$ $=$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ If we put $r = 0$ and $a_n = 0$ and b_n , by taking the limit in the inequality $f(u_n) \cdot f(b_n) \leq 0$. \Rightarrow $\lim_{n\to\infty} f(n_n) \cdot f(n_n) \leq 0$ => $f(n) \cdot f(n) \leq 0$

$$
f(w) = 0.
$$
\n
$$
|G_{n}-b_{n}|<2
$$
 5^{top}red:
\n
$$
F
$$
 must be in Im, b_{n}],
\n
$$
C_{n} = \frac{a_{n}+b_{n}}{2} \text{ is the estimate of } V.
$$
\n
$$
S_{0}, |Y-C_{n}| \leq \frac{1}{2}(b_{n}-An)
$$
\n
$$
F_{1}^{max} = 2^{-cm+1}cb_{0}-a_{0}.
$$
\n
$$
F_{1}^{max} = 2^{-cm+1}cb_{0}-a_{0}.
$$
\n
$$
F_{1}^{max}M_{y}, |Y-C_{n}| \leq 2^{-(n+1)}cb_{0}-a_{0}.
$$
\n
$$
F_{2}^{max}M_{y}, |Y-C_{n}| \leq 2^{-m+1}cb_{0}-a_{0}.
$$
\n
$$
F_{2}^{max}M_{y}, |Y-C_{n}| \leq 2^{-m+1}cb_{0}-a_{0}.
$$
\nLet Im, b_{n} be integrals used in $Brset$, then
\n
$$
F_{1}^{max}A_{n} = \frac{a_{n}+b_{n}}{2}
$$
\n
$$
F_{2}^{max}A_{n} = \frac{a_{n}+b_{n}}{2}
$$
\n
$$
F_{3}^{max}A_{n} = \frac{a_{n}+b_{n}}{2}
$$
\n
$$
F_{3}^{max}A_{n} = \frac{a_{n}+b_{n}}{2}
$$

$$
|Y-C_{n}| \leq 2^{-cM+1}C_{b_{0}}-A_{0}.
$$
\n
$$
\sum_{i=1}^{n} T_{i}m e \text{ complexity}: (M_{1})
$$
\n
$$
\sum_{i=1}^{n} T_{i}m e \text{ complexity}: (M_{1})
$$
\n
$$
W_{e} \text{ known} |Y-M| \leq 2^{-cM+1}C_{b_{0}}-A_{0}
$$
\n
$$
L_{e} \leq 2^{-cM+1}C_{b_{0}}-A_{0}.
$$
\

How many steps stoudd be taken to compute