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Instructor

Baojian Zhou
e Office: N106, Zibin Building
@ Web: https://baojian.github.io/
o Office Hours: Fri. 9:00am-10:00am
o Email: bjzhou®fudan.edu.cn
@ TAs: Will be updated!
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What is numerical computation?

Numerical computation involves studying, developing, and analyzing
algorithms to obtain numerical solutions to various mathematical problems.

@ Study of algorithms
o Mathematical analysis

@ Numerical approximation
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What is numerical computation?

Numerical computation involves studying, developing, and analyzing
algorithms to obtain numerical solutions to various mathematical problems.

@ Study of algorithms
o Mathematical analysis

@ Numerical approximation

Why the numerical computation? To “solve” many real-world problems,
including root-finding, solving large-scale linear equations, generating
real-world images/videos, analyzing deep neural networks, and many others.
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Square root calculating

How to calculate /2 numerically?
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Square root calculating

How to calculate /2 numerically?

X, 1
A modern way : x;y11 = AL,
2 Xt
t | xt with xo =100 | x¢ with xo =2 | x¢ with xop = —100
0 | 100.0 2.0 -100.0
1 | 50.0100000000 1.5000000000 | -50.0100000000
2 | 25.0249960008 1.4166666667 -25.0249960008
3 | 12.5524580467 1.4142156863 -12.5524580467
4 | 6.3558946949 1.4142135624 -6.3558946949
5 | 3.3352816093 1.4142135624 -3.3352816093
6 1.9674655622 1.4142135624 -1.9674655622
7 | 1.4920008897 1.4142135624 -1.4920008897
Babylonian method is about 8 | 14162413320 14142135624 | -1.4162413320
9 1.4142150141 1.4142135624 -1.4142150141

3600 - 3800 years old
(1800-1600 BC)

Note: v/2 ~ 1.4142135623730950488016887.
e Why does (not) this algorithm work?

@ How efficient is this method given fixed

precision?
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Root finding

An artillery officer wants to shell an enemy camp located d meters away from the
position. Given that the shell leaves the cannon at an initial velocity v m/s,
disregarding air resistance, what should be the angle 6 between the cannon and the
horizontal line to hit the target? (Given gravitational acceleration g = 9.8m/s?).

2 .
£(0) = 2v; sn;@cos@

—d=0.

5/60



Course Introduction
000080000000

Solving large-scale linear system

PageRank: An algorithm used by
Google Search to rank web pages in
their search engine results.

How do you rank web pages?

Node: Web page, Edge: Hyperlink

o Foundation of Google's success
o Analyzes web structure
@ Determines importance

Let 7t be the vector of importance of
all web pages, D be the outdegree
diagonal matrix, and A be the adja-
cency matrix of the web graph. To
calculate 7, we solve the following

1—
T = (()cATD_1 + naE) T,

where E is all one matrix and « is
the dumping factor.
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ResNet:
x
dentity  Xt+1 = ResBlock (xt, 0)
Xt+1 :Xt+f(xt,9t),t:0,1,...,L
= ResN L oL
Residual Network ODE Network Ypred = €S et(x )’ (y pred ) - %
5 5
a Add more layers and get
g° dx(t)
. s f(x(t),t,0).
! / Euler discretization
0% 5 =50 5
Input/Hidden/Output Input/Hidden/Output Xp11 = Xp + h . f (th tn, 0)
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Solving ordinary differential equation

A Transformer is a flow map on (S9=%)" : the input se-
quence (x(0));c[;) € (S97)" is an initial condition which
is evolved through the dynamics

1 n
xi(t) = PL Z &B( Q)% (1), K () (1)) V(t)x(t)
i (t) 20 =

for all i € [n] and t > 0 where the function

1 Maskea
1| Multi-Headed
+ | selt-attention

Pr(y) =y — (x,y)x

denotes the projection of y € R? onto Tx(SY~1). The
wuee partition function Zg j(t) > 0 reads

Encoding

n
Zpi(t) = 3 BN K(O(0),
k=1
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Solving stochastic differential equation

To draw the connection between De-
noising Diffusion Probabilistic Models
(DDPM) and SDE, we consider the
discrete-time DDPM iteration. For j =
1,2,...,N:

xi = /1= Bixi_1+/Bizi-1,
Zi_1 ~ N(O, I)

We can show that this equation can be
derived from the forward SDE equation
below. The forward sampling equation
of DDPM can be written as an SDE via

dx = f@x dt ++/B(t) dw.
2 ~——

=f(x,t) =s(t)

Figure 1: 1ebA-HQ 256 x 256 (lft) and
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Practical
Problem

A general paradigm

Solving Data
Science/Al/Math
Problem
Mathematical Numerical Code
Model Algorithm Implementation

Numerical Analysis
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Course Topics

Fundamentals and computer arithmetic (This lecture)
Solving nonlinear equations

Solving linear equations (Ax = b)

Solving large-scale sparse systems

(Preconditioning) Conjugate Gradient Method (CGM)
Semi-iterative (SI) and Chebyshev method

Iterative methods on graphs and localization
Eigenvalues and eigenvectors of matrices
Interpolation and least squares

Numerical differentiation and integration

Solving ODE and boundary value problems
Randomization and SDE
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Course Website and References
Fudan elLearning

© https://elearning.fudan.edu.cn/

Recommended books:
@ Numerical Analysis (3rd edition), Timothy Sauer.

@ Numerical Analysis: Mathematics of Scientific Computing, David
Ronald, and Elliott Ward Cheney.

e Matrix Computation (4th), Gene H. Golub and Charles F. Van Loan.

Other references:
@ Matrix Analysis, Roger Horn and Charles Johnson

@ Numerical Methods, Design, Analysis, and Computer Implementation of
Algorithms, Anne Greenbaum and Timothy P. Chartier
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Grade & Programming languages

Grading Breakdown
e Homeworks: 45%
o Middle term exam (take home): 5-10%
e Final exam: 40-45%
@ Sign-in: 5%

Programming Languages
@ Python3+Scipy, Matlab, C/C++ (Recommended)

e R, Octave, Julia, Java, ... (Not Recommended)

For Matlab users
@ http://mvls.fudan.edu.cn/matlab/

13/60


http://mvls.fudan.edu.cn/matlab/

uction Fundamentals and Computer Arithmetic

®0000000000000000000O00O0000000

Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)
P(x) = 2x* +3x3 —3x? 4 5x — 1.

Use as few additions and multiplications as possible.
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Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)
P(x) = 2x* +3x3 —3x? 4 5x — 1.

Use as few additions and multiplications as possible.
Method 1: a straightforward approach

1 1 1 1 1 1 1 1 1 1
P(2>— AR R R R R A R R S
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Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)
P(x) = 2x* +3x3 —3x? 4 5x — 1.

Use as few additions and multiplications as possible.
Method 1: a straightforward approach

1 1 1 1 1 1 1 1 1 1
P(2>— AR R R R R A R R S

o # of multiplications: 10
e # of additions: 4
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Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)
P(x) = 2x* +3x® —3x% 4 5x — 1.

Use as few additions and multiplications as possible
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Evaluating a polynomial
What is the best way to evaluate the following polynomial (at x = 1/2)
P(x) = 2x* +3x® —3x% 4 5x — 1.

Use as few additions and multiplications as possible
Method 2: store some calculated numbers:

1 1 1\? 1\% 1 1\3 13 1 1\*

7*7:77 *7:7,  — = | —

272 2 2 2 2 2 2 2
>
4
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Evaluating a polynomial
What is the best way to evaluate the following polynomial (at x = 1/2)
P(x) = 2x* +3x® —3x% 4 5x — 1.

Use as few additions and multiplications as possible
Method 2: store some calculated numbers:

1 1 1\? 1\% 1 1\3 13 1 1\*
— % — = — , — * = — , — % — = —
272 2 2 2 2 2 2 2
1 1\* 1\3 1\? 1 5
”(z)‘“(z) *3*(2) —3*(2) Ty

o # of multiplications: 7
e # of additions: 4
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Evaluating a polynomial
What is the best way to evaluate the following polynomial (at x = 1/2)
P(x) = 2x* +3x3 —3x?> 4 5x — 1.

Use as few additions and multiplications as possible
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Evaluating a polynomial
What is the best way to evaluate the following polynomial (at x = 1/2)
P(x) = 2x* +3x3 —3x?> 4 5x — 1.

Use as few additions and multiplications as possible
Method 3: Nested multiplication

P(x) = —1+4x(5—3x +3x> + 2x°%)
= —1+x(5+x(-3+3x+2x%))

=—1+xx5+x*(-3+x%(3+2xx))).
o # of multiplications: 4

e # of additions: 4
Further explore the problem structure;
a better method may be possible.
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Evaluating a polynomial
Horner's method: For P(x) = Zf'(:o cix', rewrite this polynomial
@ Rewrite P(x) as: P(x) = ¢ + x(c1 + x(c2 + x(c3 + - - - + x(ck))))
o # Multiplications: k
e # Additions: k
@ Or Rewrite P(x) as:

P(x) = co+(x—r)(ca+(x—r)(ca+(x—r)(cs+-+(x—r)(ck))))
withrp=rn=---=0.
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Evaluating a polynomial
Horner's method: For P(x) = Zf'(:o cix', rewrite this polynomial
@ Rewrite P(x) as: P(x) = ¢ + x(c1 + x(c2 + x(c3 + - - - + x(ck))))
e # Multiplications: k
e # Additions: k
@ Or Rewrite P(x) as:

P(x) = co+(x—r)(ca+(x—r)(ca+(x—r)(cs+-+(x—r)(ck))))
withrp=rn=---=0.

Example: Evaluating the polynomial P(x) = 4x5 4 7x8 — 3x11 + 2x14,

Solution:
P(x) = x°(4 + 7x> — 3x°® 4 2x°)
:X5*(4—|—x3*(7+X3*(—3+x3*(2)))).

(7* 3+4)

17 /60
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Binary numbers
Binary numbers are expressed as
... bobibg.b_1b 5. ..,
where each b; € {0,1}. To the base 10 equivalent number, we have
o224 b2t b2° + by 27 b 272

Representing numbers
e Binaries: (100.0)2, (1111.0)2, (0.0)2
@ Decimals: (4.0)10, (15.0)10, (0.0)10
We have

(100.0)2 = (4.0)10
(1111.0)3 = (15.0)10, . . -
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Binary numbers

Decimal to Binary: Given any decimal number (x)10 = (¥)10 + (2)10.
where (y)10 is the integer part and (z)i0 is the fractional part. For the
integer part (y)10, we have

(¥)10 = {(yng 2+ (y)10%2

Key idea: Start recording the calculated remainders from the decimal point
and move sequentially from right to left. Example: (53)10

53/2=126 R 1

26/2=13 R 0

13/2=6R1 (53)2 = 110101
6/2=3 R0

3/2=1R1
1/2=0R 1.
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Binary numbers

Decimal to Binary: Given any decimal number (x)10 = (¥)10 + (2)10,
where ()10 is the integer part and (z)1o is the fractional part. For fractional
part (z)10, we have

(2)10 - 2 = Integer part of (z)10 -2+ fractional part of (z)10 - 2

Key idea: Start recording the calculated integers from the decimal point and
move sequentially from left to right. Example: (0.7)10

Ix2=1+.4
4x2=0+.8
8x2=1+6 (0.7)2 = 0.10110
6x2=1+4+.2
2x2=0+.4
4 x2=0+.8.
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Binary numbers
Binary to decimal: For the integer part, simply add up powers of 2 as we
did before. The binary number (10101); is simply
1-2*4+0-2341-2240-28 +1-2% = (21)10. Fractional part, if the
fractional part is finite (a terminating base 2 expansion), proceed the same

way. For example,
1 1 1 11
A0l ==+ -4+ —==| — .
(1011)2 =5+ 5+ 16 <16>10

What about x = (0.1011),7
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Binary numbers

Binary to decimal: For the integer part, simply add up powers of 2 as we
did before. The binary number (10101); is simply
1-2*4+0-2341-2240-28 +1-2% = (21)10. Fractional part, if the
fractional part is finite (a terminating base 2 expansion), proceed the same

way. For example,
1 1 1 11
A0l o=+ -+ —==| — .
(1011)2 =5+ 5+ 16 <16>10
What about x = (0.1011)27 Try to use the following trick

2*x = 1011.1011
x = 0000.1011
Subtracting yields (15)10x = (1011) = (11)109 and x = 11/15.
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Floating point representation

Many real-world numbers

7 = 3.141592653589793238462643 . . .

e ~ 2.718281828459045235360287 . . .

Planck constant: h = 6.62607015 x 10734 J . Hz 1
Electron mass: m, ~ 9.1093837015(28) x 10~3'kg
Speed of light: ¢ = 2.99792458 x 108m/s

Between 1078 to 1082 atoms in the observable universe

e 6 6 o o
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Floating point representation

Many real-world numbers
o = 3.141592653589793238462643 . ..
@ e = 2.718281828459045235360287 . . .
o Planck constant: h = 6.62607015 x 10734/ . Hz~!
o Electron mass: m, =~ 9.1093837015(28) x 10 3l kg
o Speed of light: ¢ = 2.99792458 x 108m/s
o Between 1078 to 1082 atoms in the observable universe

Any given real number (x)19 can be written in the form
Scientific notations: (x);0 = +m x 10", (1)

where n is the power and m is the mantissa.

How to save these scientific numbers into a computer?
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Floating point representation - IEEE 754

ized as an American National Standard (ANSI) IEEE Std 754-1985 David Stevenson, Chair
Andrew Allison Paul F. Flanagan John C. Nash
William Ames Gordon Force Dan ODowd
An American National Standard Mike Arya Lloyd Fosdick Cash Olsen
Janis Baron Robert Fraley A Padegs
Steve Baumel Howard Fullmer John F. Palmer
i ina-Poi Dileep Bhandarkar Daniel D. Gajski Beresford Parlett
|IEEE Standard for Binary Floating-Point oo D o perestord Pace
Arithmetic EH Bristol CW.Gear Mary H. Payne
‘Werner Buchholz Martin Graham Tom Pittman
Jim Bunch David Gustavson Lew Randall
Ed Burdick Guy K. Haas Robert Reid
Gary R. Burke Kenton Hanson Chsistian Reinsch
Paul Clemente Chuck Hastings Frederic N. Ri
gm;zms Committee W.J. Cody David Hough Stan Schmidt
ofthe Jerome T. Coonen John Edward Howe Van Shahan
IEEE Computer Society Jim Crapuchettes Thomas E. Hull Robert L. Smith
Itzhak Davidesko Suren Irukulla Roger Stafford
‘Wayne Davison Richard E. James Il G.W. Stewart
Rl Bl Bos0 RH. Delp Paul S, Jensen Robert Stewart
IEEE Standards Board James Demmel W. Kahan Harold S. Stone
Donn Denman Howard Kaikow ‘W.D. Strecker
e 25 Alvin Despain Richard Karpinski Robert Swarz
American National Standards Institute Augustin A Dubrulle Visginia Klema George Taylor
Tom Egges Les Kohn James W. Thomas
—_— Philip J. Faillace Dan Kuyper Das-Sun Tsien
© Copyright 985 by Richard Fateman M. Dundee Maples Greg Walker
The Insttteof Flctriat and Electronis Englners, nc Dacid Fergn Rey afortn e alther
45 East 47tk Strest, New Yark, NY 10017, USA Don Feinberg William H. McAllister Shiomo Waser
P s e o i e rata s il Smart Feldman Colin McMaster P.C. Waterman
e without she ‘Eugene Fisher Dean Miller Charles White
Ity wrinenpemmision of e P Webb Miller

IEEE 754-1985,2008,2019 Authors

Real Implementations: C/C++, Matlab, Fortran, Python, Julia, Java, ...

Adopted in almost all programming languages!
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Floating point representation - IEEE 754

A floating point number consists of three parts: the sign (4-or-), a mantissa,
which contains the string of significant bits, and an exponent. The three
parts are stored together in a single computer word.

precision sign | exponent | mantissa | total bits
single 1 8 23 32
double 1 11 52 64
long double | 1 15 64 80

IEEE standardized floating-point number
The form of a normalized |IEEE floating point number is

+1.bbb...b x 2P,

where b € {0,1}, p € Z.
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Floating point representation - Double precision

A binary number is stored as a normalized floating point number: for
example, the decimal number 9, which is (1001); in binary, would be stored
as

+1.001 x 23. (2)

For double precision, exponent length M = 11 and mantissa length N = 52.
Example: real number 1

—i—l.\ 0000000000000000000000000000000000000000000000000000 \ x 29,

where boxed are 52 bits of the mantissa. The next floating point number
greater than 1 is

—|—1.\ 0000000000000000000000000000000000000000000000000001 \ x 20,

which equals to 1 + 2752,
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Machine epsilon ¢,

Definition 2.1 (Machine epsilon)

The number machine epsilon, denoted €,,,¢p, is the distance between 1 and
the smallest floating point number greater than 1. For the IEEE double
precision floating point standard,

€mach = 2_52 (3)

The decimal number 9.4 = (1001.0110); is left-justified as

+1[0010110011001100110011001100110011001100110011001100[110. .. x 23,

where we have boxed the first 52 bits of the mantissa.

Question: How do we deal with these remaining infinite binary numbers?
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Truncation/Rounding

Chopping
o It throws away the bits that fall off the end.
o It is biased (Why 7)

Rounding ( IEEE Rounding to Nearest Rule):
o if bit 53 is 1, then add 1 to bit 52 (round up)
o if bit 53 is 0, then add 0 to bit 52 (round down)
o Exception: if the bits following bit 52 are 10000. .. (that is the value
2753), exactly halfway between up and down, to avoid bias, round up
or round down according to which choice makes the final bit 52
equal to 0.
There are two equally distant floating point numbers to round to, should be
decided in a way that doesn't prefer up or down systematically. This is to try
to avoid the possibility of an unwanted slow drift in long calculations due

simply to a biased rounding.
27 /60



Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equ

0000000000000V e00000000000000

IEEE Rounding to Nearest Rule

Given number x, we denote the number of IEEE Rounding to Nearest Rule
by fl(x). There are two steps from x to f/(x): Example, to find f/(1/6), note
that 1/6 = 0.001 = 0.001010101 ... in binary.

o Justify

+1,0101010101010101010101010101010101010101010101010101 [0101 . ... x 23

@ Round

fl(1/6) = +1.| 0101010101010101010101010101010101010101010101010101 ‘ x 273

Example: To find f/(11.3), note that 11.3 is equal to 1011.01001 in binary.
o Justify

+1.‘ 0110100110011001100110011001100110011001100110011001 ‘1001 Lox 23

@ Round

fI(11.3) = +1]0110100110011001100110011001100110011001100110011010 | x 2

28 /60
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Rounding error
Example: 9.4 = (1001.0110),
9.4 = +1.’ 0010110011001100110011001100110011001100110011001100 ‘110 .o.x28
where we have boxed the first 52 bits of the mantissa.
f1(9.4) = +10010110011001100110011001100110011001100110011001101 |x 23,

To measure the rounding error,
the discarded : . 1100 x 2792 x 23 = D110 x 2 1 x 23 = 4 x 278
rounded into : 272 x 23 = 274,
We have
fl(9.4) = 9.4 +27% — 0.4 x 2748
=04+ (1-0.8)27%
=04+02x27%,

where we call 0.2 x 2749 the rounding error.
29 /60



How to measure the error?

@ x the quantity we want to store/compute
@ x. the quantity we stored and computed
To measure the error, we can check

o absolute error |x. — x|

e relative error |X°|X_|X| when x # 0

Theorem 2.2 (Relative error)

In the IEEE machine arithmetic model, the relative rounding error of fl(x) is
no more than one-half machine epsilon

|fI(x) — x|

1
|X| < §5mach-

30/60
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Machine representation

How to represent a double precision floating point number (x)?

exponent fraction
sign (11 bit) (52 bit)
|
I
63 52 0

Each word has the form

sejerezey...e11b1bobsbs ... bso (4)

@ s = 0 for positive number, s = 1 for negative number.
@ exponent ejexeses ... €11
e 00000000000: 0
e 00000000001 — 11111111110: 1 — 2046. For each m, we add
210 1 =1023. So, exponents will be in range [—1022, 1023].
o 11111111111: 2047

31/60
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Machine representation

For example, the number 1, or

1= —l—l.\ 0000000000000000000000000000000000000000000000000000 \x 20,

has double precision machine number form

[0] 01111111111 | 0000000000000000000000000000000000000000000000000000 |

The special exponent value 2047:

@ 2047: used to represent oo if the mantissa bit string is all zeros and
NaN (not a number), otherwise. So, first 12 bits of Inf is
[0111[1111[1111]and -Infis [1111]1111]1111], the rest 52 bits are
all zero.

@ The machine number NaN also begins \ 1111 | 1111 | 1111‘ but has a
nonzero mantissa.
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Machine representation

machine number | Example | Hex format

+Inf 1/0 7FF0000000000000
-Inf -1/0 FFF0000000000000
NaN 0/0 FF FXXXXOOOXXKX

The special exponent value 0: e;e; ... e17 = (00000000000),, to present
non-normalized floating point number.

®

We can these as subnormal floating point numbers
Question: smallest representable positive number

33/60
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Machine representation

machine number | Example | Hex format

+Inf 1/0 7FF0000000000000
-Inf -1/0 FFF0000000000000
NaN 0/0 FF FXXXXOOOXXKX

The special exponent value 0: e;e; ... e17 = (00000000000),, to present
non-normalized floating point number.

®

We can these as subnormal floating point numbers
Question: smallest representable positive number

2—52 % 2—1022 — 2—1074

‘ 0 I 00000000000 I 0000000000000000000000000000000000000000000000000001 |.
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Machine representation

Subnormal numbers include the most important number 0. Two Os (They
are treated as the same number):

@ +0: (0000000000000000)16
e -0: (8000000000000000)16
What about numbers beyond?

@ overflow: too large to be stored as a regular floating point number.
For double-precision floating point numbers, this means the exponent is
greater than 1023. Most computer languages will convert an overflow
condition to machine number +Inf, -Inf, or NaN.

o underflow: double precision, this occurs for numbers less than 271974,
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duction Fundamentals and Computer Arithmetic

000000000000 000000000e0000000

Loss of significant digits

Suppose we have two seven-significant digits; we need to subtract them:
123.4567 — 123.4566 = 000.0001.

The result has only one-digit accuracy.
Example: v/9.01 — 3 ~ 3.0016662 — 3 = 0.0016662, if we save the result on
a 3-decimal-digit computer, then the result will be 0. Can we fix it?

35/60
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Loss of significant digits

Suppose we have two seven-significant digits; we need to subtract them:
123.4567 — 123.4566 = 000.0001.

The result has only one-digit accuracy.

Example: v/9.01 — 3 ~ 3.0016662 — 3 = 0.0016662, if we save the result on
a 3-decimal-digit computer, then the result will be 0. Can we fix it? Avoid
this issue by rewriting the expression:

 (V/9.01 - 3)(v9.01 + 3)
V0.0l -3 = T I3

35/60
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Loss of significant digits
2

Example: £y = Vx2 +1 -1, E2:x7
x24+1+1
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Loss of significant digits

Example : E; =

Vx2+1-1,

E =

x2

x24+1+1

X

Ey

E>

1.000000000000000e+-00
1.000000000000000e-01
1.000000000000000e-02
1.000000000000000e-03
1.000000000000000e-04
1.000000000000000e-05
1.000000000000000e-06
1.000000000000000e-07
1.000000000000000e-08
1.000000000000000e-09
1.000000000000000e-10
9.999999999999999%€-12
1.000000000000000e-12
1.000000000000000e-13
1.000000000000000e-14

4.142135623730951e-01
4.987562112088950e-03
4.999875006239662e-05
4.999998750587764e-07
4.999999969612645e-09
5.000000413701855e-11
5.000444502911705e-13
4.884981308350689¢-15
0.000000000000000e4-00
0.000000000000000e+-00
0.000000000000000e+-00
0.000000000000000e+-00
0.000000000000000e+-00
0.000000000000000e+-00
0.000000000000000e+-00

4.142135623730951e-01
4.987562112089027e-03
4.999875006249610e-05
4.999998750000624e-07
4.999999987500000e-09
4.999999999875001e-11
4.999999999998750e-13
4.999999999999987e-15
5.000000000000001e-17
5.000000000000000e-19
5.000000000000000e-21
5.000000000000000e-23
5.000000000000000e-25
5.000000000000000e-27
5.000000000000000e-29
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Loss of significant digits

Example : E; =

1 — cosx

sin? x

1

27 1+ cosx’
Notice that E; = E,. But, evaluate them at points near x = 0, we have

X

E;

E>

1.000000000000000
0.100000000000000
0.010000000000000
0.001000000000000
0.000100000000000
0.000010000000000
0.000001000000000
0.000000100000000
0.000000010000000
0.000000001000000
0.000000000100000
0.000000000010000
0.000000000001000
0.000000000000100
0.000000000000010

0.649223205204762
0.501252086288566
0.500012500208481
0.500000124992189
0.499999998627931
0.500000041386852
0.500044450291337
0.499600361081322
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000

0.649223205204762
0.501252086288571
0.500012500208336
0.500000125000021
0.500000001250000
0.500000000012500
0.500000000000125
0.500000000000001
0.500000000000000
0.500000000000000
0.500000000000000
0.500000000000000
0.500000000000000
0.500000000000000
0.500000000000000
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Loss of significant digits

Example: Find roots of x? + 9¥2x = 3.

Consider two roots

b+ VB dac
x= 2a
It gives
B —912 4+ /0924 4(3)
= 2
and

_09l2 /024
x1 = —2.8424 x 101, x, = ot 29 + 4(3).

MATLAB calculates x, = 0.
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Exp-normalize trick

Consider the sigmoid function and its derivative

1

= [T o'(x) = o(x)(1 — o(x))

a(x)

The sigmoid and its derivative are often used in logistic regression for binary
classification.

39/60
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Exp-normalize trick

Consider the sigmoid function and its derivative

1

= [T o'(x) = o(x)(1 — o(x))

a(x)

The sigmoid and its derivative are often used in logistic regression for binary
classification. It is better to consider the following

e if x > 0, then calculate o(x) as o(x) = 1+}e—x
e if x <0, then calculate o(x) as o(x) = He_%

39/60
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Exp-normalize trick

Suppose you want to evaluate a probability distribution 7 parametrized by a
vector x € R” as the follows:

exp(x;)
>jm1 exp(xj) (©)

When x = [1, —5,1000], it will overflow.

T =

40/60
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Exp-normalize trick

Suppose you want to evaluate a probability distribution 7 parametrized by a
vector x € R” as the follows:

exp(x;)
>jm1 exp(xj) (©)

When x = [1, —5,1000], it will overflow. But, we can reformulate it as

T =

___exp(xi —b)exp(b) _ exp(xi — b) (7)

T = n n ’
>_j—1exp(xj — b)exp(b) > i, exp(xj — b)

where b = max{x;|i = 1,2,...,n}.
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The Log-Sum-Exp Trick

We still assume that 7; = ZneXP(Xf)

j=1 exp(x;)
we want to calculate log-distribution

In many machine learning problems,

eXp(Xi) (8)

log 7; = log < PX1)__
BT T exp(x)

How to avoid overflow?

41/60
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The Log-Sum-Exp Trick

We still assume that m; = %-
j=1 i

we want to calculate log-distribution

In many machine learning problems,

exp(xi)
log Z},ﬂ exp(x) (8)

How to avoid overflow? Notice that

log m; =

exp(x)
S ew(x)

where logsumexp(x) = b + log Zf:l exp(x; — b). Typically,
b =max{xj|i =1,2,...,n}. Check more in PyTorch:

log 71; = log = x; — logsumexp(x), (9)

https://pytorch.org/docs/stable/generated/torch. logsumexp.html
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Quick Summary

@ Try to avoid the amplification and propagation of rounding errors.
@ Try to avoid subtracting two nearly equal numbers.
© Try to avoid large numbers "swallowing" small numbers.

@ Try to avoid having a divisor with a very small absolute value.
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Solving Equations

Definition 3.1 (Root and problem definition)

Given a function f : R — R, we say that f(x) has a root at x = r if
f(r)=0.
@ How do we know a root exists?

o If the root exists, how can we find it?

43/60
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Solving Equations

Definition 3.1 (Root and problem definition)

Given a function f : R — R, we say that f(x) has a root at x = r if
f(r)=0.
@ How do we know a root exists?

o If the root exists, how can we find it?

To check the existence of the root:

Let f be continuous on [a, b, satisfying f(a)f(b) < 0. Then f has a root in
[a, b], that is, there exists a number r € [a, b] and f(r) = 0.

Let f(x) := e* —sinx — 2. Then,
f(0)=-1<0,f(r)=¢e™—2>0. It has a root in [0, 7].
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Bisection Method

Assume f has a root r € [a, b], how to find r?

@ Naive method: scan all values with d precision from a to b. But the
time complexity will be O ((b — a)109).
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Bisection Method

Assume f has a root r € [a, b], how to find r?

@ Naive method: scan all values with d precision from a to b. But the
time complexity will be O ((b — a)109).

Intuition: Find a way to “squash” the interval [a, b], so that location of r
can be narrowed down.

Idea of the bisection: Find the middle point ¢ = (a+ b)/2 if f(a)f(c) <0,
then narrow down the interval [a, b] into [a, c] and let b = ¢; if f(c) =0,
return r = ¢; if f(b)f(c) < 0, then narrow down the interval [a, b] into

[b, c] and let a = c. Repeat this step until (b — a)/2 is small enough.
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Bisection Method
Algorithm 1 Bisection(f, a, b, €)

: Input: [a, b] and f are such that f(a)f(b) < 0, tolerance €
: Output: an (approximate) root of f
while (b —a)/2 > e do
c=(a+b)/2
if f(c) =0 then
return c
end if
if f(a)f(c) <0 then
b=c
else
a=c
end if
: end while
: Return (a+ b)/2

© o N TR b

el e
El S e
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Accuracy and time complexity analysis

Accuracy: After n iterations, we have ¢, = (ap + b,)/2. We measure the
accuracy of the solution by the solution error, |r — c,|. We have

Ir =l < St (10)

At the beginning (n = 0), the distance between ¢, and r must be less than
(b — a)/2. After each iteration, the interval is narrowed down by the half of
(b—a). Hence, after n iterations, |r — c,| must be less than (b—a)/2"*!. W

Time complexity: The time complexity depends on how many function
evaluations needed. The number of function evaluations after n iterations of
Bisection is n + 2. Hence, O(n+ 2).
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Accuracy and iterations

Definition 3.3 (p correct places (p))

A solution is correct within p decimal places if the error is less than 0.5 x 10~P.

Example 3.4

Use the Bisection method to find a root of f(x) = cosx — x in [0, 1] to
within 6 correct places. How many steps will be needed?
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Accuracy and iterations

Definition 3.3 (p correct places (p))

A solution is correct within p decimal places if the error is less than 0.5 x 10~P.

Example 3.4

Use the Bisection method to find a root of f(x) = cosx — x in [0, 1] to
within 6 correct places. How many steps will be needed?

Solution: n = 20.

47 /60
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Fixed-Point lteration

Using a calculator (in radian mode), if you keep pressing the cos key, you'll
find that no matter which number you start with, it will eventually converge
to: 0.7390851332. It actually solves cosx — x = 0.

Fixed Point: The number r € R is a fixed point of g if g(r) = r.

Algorithm 2 FPI(g, xo)
1: fori=0,1,2,...,do

2 xip1 = g(xi)
3: end for

Theorem 3.5 (The convergences of FPI)

If g is continuous and x; converges to r, then r is a fixed point.

To prove, note that

glr)=g|( lim x; | = lim g(x;) = lim xj41 = r.
i—00 i—00 i—00 48 / 60
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Fixed-Point Iteration - Example

FPI solves the fixed point problem g(x) = x. Can every equation f(x) =0
be turned into a fixed-point problem g(x) = x?

49 /60
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Fixed-Point Iteration - Example

FPI solves the fixed point problem g(x) = x. Can every equation f(x) =0
be turned into a fixed-point problem g(x) = x? Yes, just let
g(x) = f(x) + x! But, if we know the analytic form of f, we can have
different fixed-point reformulations. For example, f(x) = x3 + x — 1, then
we have the following possibilities

Q@ x=1—x3 thenlet g1(x) =1—x3

Q x = v/1—x, then let go(x) = V1 —x
© add 2x3 on both sides, we have 3x3 + x = 1 + 2x3, that is, x = iigiz

3
then let g3(x) = }igiz

49 /60
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Fixed-Point Iteration (FPI)

Let f(x) = x3+ x — 1 =0, we can have the following 3 different forms of g

1+ 2x3
gl(X) =1- X37 g2(X) = v 1- X, g3(X)

1+ 3x2
t xt = g1(xe—1) | xt = g2(xe—1) | xt = g3(xe—1)
0 0.50000000 0.50000000 0.50000000 A” three iteration procedure
1 | 0.87500000 0.79370053 0.71428571
2 | 0.33007813 0.59088011 06s3i7o72  Starts from xg = 0.5. Some
3 0.96403747 0.74236393 0.68232842 observations:
4 | 0.10405419 0.63631020 0.68232780
5 0.99887338 0.71380081 0.68232780 @ Xt41 = gl(Xt) cannot
6 | 0.00337606 0.65900615 0.68232780 converge properly.
7 | 0.99999996 0.69863261 0.68232780
8 | 0.00000012 0.67044850 - @ xr+1 = &2(x¢) converges
9 | 1.00000000 0.69072912 - .
10 | 0.00000000 0.67625892 - but relatively slow.
11 | 1.00000000 0.68664554 - ® Xpy1 = g3(xt) converges
12 | 0.00000000 0.67922234 -
13 | - 0.68454401 : very fast.
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Fixed-Point Iteration - Example

f(x) = x3 + x — 1. Iterations of three different methods.
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Convergence

Linear Convergence: Let e; = |r — x;| denote the error at step t of an

iterative method. If
lim S — 5 <1, (11)
t—00 €t
the method is said to obey linear convergence with rate S.
Locally convergent: An iterative method is called locally convergent to r if
the method converges to r for initial guesses sufficiently close to r.

Theorem 3.6 (Linear convergence of FPI)

Assume that g is continuously differentiable, that g(r) = r, and that S =
lg "(r)] < 1. Then Fixed-Point Iteration converges linearly with rate S to
the fixed point r for initial guesses sufficiently close to r.
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Newton’s method

Key Idea: If f is differentiable, we draw the tangent line at x; and use the
intersection of this tangent with the x-axis as an approximate.

2 One point on the tangent line is (xo, f(xo))-
L The point-slope formula for the equation of
alineis y — f(xo) = f'(x0)(x — x0). The

x| intersection point can be found by letting
a }0 X y=0. Thatis, y — f(x0) = f'(x0)(x — x0)
_ f(xo) _ f(x0)
_1+ X —Xo = fI(XO),—)X—XO f/(Xo)'

Algorithm 3 Newton(f, xp)

1: xp = initial guesses

2: fort=0,1,2,..., do

3 xer1 = Xt — F(x¢)/F'(xt)
4: end for

5

: Return x;11 5260
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Newton’s method

Algorithm 4 Newton(f, xp)

1: xg = initial guesses

2: fort=0,1,2,..., do
3: Xt4+1 = Xt — m
4: end for

5: Return x;;1

Consider f(x) = x3 + x — 1 and use the New-
ton’s method to find a root of f(x) =0. The
F(xt) iteration table of the Newton's method shows
as the following:

Xt er = |x¢ — x*| et/etz_1

ONOOOTPA WN - O+

-0.69999999999999995559107901499374 | 1.38232780e+00 | -
0.12712550607287453896532269936870 5.55202298e-01 0.290556
0.95767811917566125767820039982325 2.75350315e-01 0.893271
0.73482779499450145976879866793752 5.24999912e-02 0.692449
0.68459177068492671480726130539551 2.26396686e-03 0.821394
0.68233217420448422085854645047220 4.37037646e-06 0.852666
0.68232780384433244780240102045354 1.63131730e-11 0.854084
0.68232780382801927476776882031118 0.00000000e+00 | -

0.68232780382801927476776882031118 - -
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Newton’s method - Convergence

Definition 3.7 (Quadratically convergent)

Let e; = |xt — x*| denote the error after step t of an iterative method. The
iteration is quadratically convergent if

T !
/\/I—tll)n;<> &2 < 00. (12)

Theorem 3.8 (Quadratically convergent of the Newton's)

Let f be twice continuously differentiable and f(x*) = 0. If f'(x*) # 0, then
Newton's Method is locally and quadratically convergent to x*. The error e;

at step t satisfies

. €t+1 . . f"(X*)
tILr‘go 2 - M, where M = 2 00) (13)

V.
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Secant method

The Newton's method converges very fast. But, it needs to have derivative
information, which may not be available. Can we do any approximation
based the Newton's method?

56 /60
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Secant method

The Newton's method converges very fast. But, it needs to have derivative

information, which may not be available. Can we do any approximation
based the Newton's method?

Key Idea: Approximate the derivative by constructing a secant line!

An approximation of f'(x;) atx; : f'(x¢) ~ f()ii)_)f((xt_l) (14)
t — Xt—1

Algorithm 6 Secant(f, xg, x1)

Xo, x1 be initial guesses
fort=1,2,...,do

Xer1 = X~ O
end for

Return x;11

RAEE A
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Consider f(x) = x3 4 x — 1 and use the Secant method to find a root of
f(x) =0. Let xp =0,x; =1 and check f(xp)f(x1) = -1 < 0.
The iteration table of the Secant method shows as the following:

Xt

|Xt _X*‘ y

OO ~NOO A WN KO

0.00000000000000
1.00000000000000
0.50000000000000
0.63636363636364
0.69005235602094
0.68202041964819
0.68232578140989
0.68232780435903
0.68232780382802
0.68232780382802

6.8232e-01
3.1767e-01
1.8232e-01
4.5964e-02
7.7245e-03

3.0738e-04
2.0224e-06
5.3100e-10
8.8817e-16

0.0000e+00 /—1«'
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Summary of secant method

Advantages:
@ Under some conditions, it converges faster than a linear rate.
@ It does not require the derivative information.
© Compared with Newton's method, it requires only one function
evaluation per iteration.
Disadvantages:
@ It may not converge.
@ There is no guaranteed error bound for the computed iterates.
Q It is likely to have difficulty if f'(x*) = 0. This means the x-axis is
tangent to the graph of y = f(x) at x = x*.
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Brent's method

Can we take advantage of the above methods?
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Brent's method

Can we take advantage of the above methods?
Richard Brent devised a method combining the advantages of the bisection
and secant methods.

@ It is guaranteed to converge.
@ It has an error bound, which will converge to zero in practice.

o For most problems f(x) = 0, with f(x) differentiable about the root x*,
the method behaves like the secant method.

@ In the worst case, it is not too much worse in its convergence than the
bisection method.
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Practical Implementations

Implementations

e Matlab: fzero
https://www.mathworks.com/help/matlab/ref/fzero.html
o Python:

o scipy.optimize.brenth: Find a root of a function in a bracketing interval
using Brent's method with hyperbolic extrapolation.

o scipy.optimize.bisect: Find root of a function within an interval using
bisection.

e scipy.optimize.ridder: Find a root of a function in an interval using
Ridder's method.

e scipy.optimize.brentq: Find a root of a function in a bracketing interval
using Brent's method.
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