
Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Introduction to numerical computation

Baojian Zhou

DATA830001, Numerical Computation
School of Data Science, Fudan University

Sep. 4th, 2024

1 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Instructor

Baojian Zhou
Office: N106, Zibin Building
Web: https://baojian.github.io/

Office Hours: Fri. 9:00am-10:00am
Email: bjzhou@fudan.edu.cn
TAs: Will be updated!

2 / 60

https://baojian.github.io/

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

What is numerical computation?

Numerical computation involves studying, developing, and analyzing
algorithms to obtain numerical solutions to various mathematical problems.

Study of algorithms
Mathematical analysis
Numerical approximation

Why the numerical computation? To “solve” many real-world problems,
including root-finding, solving large-scale linear equations, generating
real-world images/videos, analyzing deep neural networks, and many others.

3 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

What is numerical computation?

Numerical computation involves studying, developing, and analyzing
algorithms to obtain numerical solutions to various mathematical problems.

Study of algorithms
Mathematical analysis
Numerical approximation

Why the numerical computation? To “solve” many real-world problems,
including root-finding, solving large-scale linear equations, generating
real-world images/videos, analyzing deep neural networks, and many others.

3 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Square root calculating
How to calculate

√
2 numerically?

Babylonian method is about
3600 - 3800 years old

(1800-1600 BC)

A modern way : xt+1 =
xt
2
+

1
xt

t xt with x0 = 100 xt with x0 = 2 xt with x0 = −100
0 100.0 2.0 -100.0
1 50.0100000000 1.5000000000 -50.0100000000
2 25.0249960008 1.4166666667 -25.0249960008
3 12.5524580467 1.4142156863 -12.5524580467
4 6.3558946949 1.4142135624 -6.3558946949
5 3.3352816093 1.4142135624 -3.3352816093
6 1.9674655622 1.4142135624 -1.9674655622
7 1.4920008897 1.4142135624 -1.4920008897
8 1.4162413320 1.4142135624 -1.4162413320
9 1.4142150141 1.4142135624 -1.4142150141

Note: √
2 ≈ 1.4142135623730950488016887.

Why does (not) this algorithm work?
How efficient is this method given fixed
precision?

4 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Square root calculating
How to calculate

√
2 numerically?

Babylonian method is about
3600 - 3800 years old

(1800-1600 BC)

A modern way : xt+1 =
xt
2
+

1
xt

t xt with x0 = 100 xt with x0 = 2 xt with x0 = −100
0 100.0 2.0 -100.0
1 50.0100000000 1.5000000000 -50.0100000000
2 25.0249960008 1.4166666667 -25.0249960008
3 12.5524580467 1.4142156863 -12.5524580467
4 6.3558946949 1.4142135624 -6.3558946949
5 3.3352816093 1.4142135624 -3.3352816093
6 1.9674655622 1.4142135624 -1.9674655622
7 1.4920008897 1.4142135624 -1.4920008897
8 1.4162413320 1.4142135624 -1.4162413320
9 1.4142150141 1.4142135624 -1.4142150141

Note: √
2 ≈ 1.4142135623730950488016887.

Why does (not) this algorithm work?
How efficient is this method given fixed
precision?

4 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Root finding

An artillery officer wants to shell an enemy camp located d meters away from the
position. Given that the shell leaves the cannon at an initial velocity v0 m/s,
disregarding air resistance, what should be the angle θ between the cannon and the
horizontal line to hit the target? (Given gravitational acceleration g = 9.8m/s2).

𝒗𝟎

𝒅𝜽

f (θ) :=
2v2

0 sin θ cos θ

g
− d = 0.

5 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Solving large-scale linear system
PageRank: An algorithm used by
Google Search to rank web pages in
their search engine results.

How do you rank web pages?

1.6%

1.6%

1.6%

1.6%1.6%

D
3.9%

F
3.9%

E
8.1%

C
34.3%B

38.4%A
3.3%

Node: Web page, Edge: Hyperlink

Foundation of Google’s success
Analyzes web structure
Determines importance

Let π be the vector of importance of
all web pages, D be the outdegree
diagonal matrix, and A be the adja-
cency matrix of the web graph. To
calculate π, we solve the following

π =

(
αA⊤D−1 +

1 − α

n
E
)
π,

where E is all one matrix and α is
the dumping factor.

6 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Solving ordinary differential equation

ResNet:

xt+1 = ResBlock (xt , θt)
xt+1 = xt + f (xt , θt) , t = 0, 1, . . . , L

ypred = ResNet(x), L
(
ypred

)
→ ∂L

∂θ

Add more layers and get

dx(t)
dt

= f (x(t), t, θ).

Euler discretization

xn+1 = xn + h · f (xn, tn, θ)

7 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Solving ordinary differential equation

A Transformer is a flow map on
(
Sd−1)n : the input se-

quence (xi (0))i∈[n] ∈
(
Sd−1)n is an initial condition which

is evolved through the dynamics

ẋi (t) = P⊥
xi (t)

 1
Zβ,i (t)

n∑
j=1

eβ⟨Q(t)xi (t),K(t)xj (t)⟩V (t)xj (t)

for all i ∈ [n] and t ⩾ 0 where the function

P⊥
x (y) = y − ⟨x , y⟩x

denotes the projection of y ∈ Rd onto Tx (Sd−1). The
partition function Zβ,i (t) > 0 reads

Zβ,i (t) =
n∑

k=1

eβ⟨Q(t)xi (t),K(t)xk (t)⟩.

8 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Solving stochastic differential equation
To draw the connection between De-
noising Diffusion Probabilistic Models
(DDPM) and SDE, we consider the
discrete-time DDPM iteration. For i =
1, 2, . . . ,N :

xi =
√

1 − βixi−1 +
√
βizi−1,

zi−1 ∼ N (0, I)

We can show that this equation can be
derived from the forward SDE equation
below. The forward sampling equation
of DDPM can be written as an SDE via

dx = −β(t)

2
x︸ ︷︷ ︸

=f (x,t)

dt +
√
β(t)︸ ︷︷ ︸

=g(t)

dw .

9 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

A general paradigm

Numerical Analysis

Practical
Problem

Mathematical
Model

Numerical
Algorithm

Code
Implementation

Solving Data
Science/AI/Math

Problem

10 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Course Topics

1 Fundamentals and computer arithmetic (This lecture)
2 Solving nonlinear equations
3 Solving linear equations (Ax = b)
4 Solving large-scale sparse systems
5 (Preconditioning) Conjugate Gradient Method (CGM)
6 Semi-iterative (SI) and Chebyshev method
7 Iterative methods on graphs and localization
8 Eigenvalues and eigenvectors of matrices
9 Interpolation and least squares
10 Numerical differentiation and integration
11 Solving ODE and boundary value problems
12 Randomization and SDE

11 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Course Website and References
Fudan eLearning

https://elearning.fudan.edu.cn/

Recommended books:
Numerical Analysis (3rd edition), Timothy Sauer.
Numerical Analysis: Mathematics of Scientific Computing, David
Ronald, and Elliott Ward Cheney.
Matrix Computation (4th), Gene H. Golub and Charles F. Van Loan.

Other references:
Matrix Analysis, Roger Horn and Charles Johnson
Numerical Methods, Design, Analysis, and Computer Implementation of
Algorithms, Anne Greenbaum and Timothy P. Chartier

12 / 60

https://elearning.fudan.edu.cn/

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Grade & Programming languages

Grading Breakdown
Homeworks: 45%
Middle term exam (take home): 5-10%
Final exam: 40-45%
Sign-in: 5%

Programming Languages
Python3+Scipy, Matlab, C/C++ (Recommended)
R, Octave, Julia, Java, . . . (Not Recommended)

For Matlab users
http://mvls.fudan.edu.cn/matlab/

13 / 60

http://mvls.fudan.edu.cn/matlab/

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)

P(x) = 2x4 + 3x3 − 3x2 + 5x − 1.

Use as few additions and multiplications as possible.

Method 1: a straightforward approach

P

(
1
2

)
= 2 ∗ 1

2
∗ 1

2
∗ 1

2
∗ 1

2
+ 3 ∗ 1

2
∗ 1

2
∗ 1

2
− 3 ∗ 1

2
∗ 1

2
+ 5 ∗ 1

2
− 1

=
5
4
.

of multiplications: 10
of additions: 4

14 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)

P(x) = 2x4 + 3x3 − 3x2 + 5x − 1.

Use as few additions and multiplications as possible.
Method 1: a straightforward approach

P

(
1
2

)
= 2 ∗ 1

2
∗ 1

2
∗ 1

2
∗ 1

2
+ 3 ∗ 1

2
∗ 1

2
∗ 1

2
− 3 ∗ 1

2
∗ 1

2
+ 5 ∗ 1

2
− 1

=
5
4
.

of multiplications: 10
of additions: 4

14 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)

P(x) = 2x4 + 3x3 − 3x2 + 5x − 1.

Use as few additions and multiplications as possible.
Method 1: a straightforward approach

P

(
1
2

)
= 2 ∗ 1

2
∗ 1

2
∗ 1

2
∗ 1

2
+ 3 ∗ 1

2
∗ 1

2
∗ 1

2
− 3 ∗ 1

2
∗ 1

2
+ 5 ∗ 1

2
− 1

=
5
4
.

of multiplications: 10
of additions: 4

14 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)

P(x) = 2x4 + 3x3 − 3x2 + 5x − 1.

Use as few additions and multiplications as possible

Method 2: store some calculated numbers:

1
2
∗ 1

2
=

(
1
2

)2

,

(
1
2

)2

∗ 1
2
=

(
1
2

)3

,

(
1
2

)3

∗ 1
2
=

(
1
2

)4

P

(
1
2

)
= 2 ∗

(
1
2

)4

+ 3 ∗
(

1
2

)3

− 3 ∗
(

1
2

)2

+ 5 ∗ 1
2
− 1 =

5
4

of multiplications: 7
of additions: 4

15 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)

P(x) = 2x4 + 3x3 − 3x2 + 5x − 1.

Use as few additions and multiplications as possible
Method 2: store some calculated numbers:

1
2
∗ 1

2
=

(
1
2

)2

,

(
1
2

)2

∗ 1
2
=

(
1
2

)3

,

(
1
2

)3

∗ 1
2
=

(
1
2

)4

P

(
1
2

)
= 2 ∗

(
1
2

)4

+ 3 ∗
(

1
2

)3

− 3 ∗
(

1
2

)2

+ 5 ∗ 1
2
− 1 =

5
4

of multiplications: 7
of additions: 4

15 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)

P(x) = 2x4 + 3x3 − 3x2 + 5x − 1.

Use as few additions and multiplications as possible
Method 2: store some calculated numbers:

1
2
∗ 1

2
=

(
1
2

)2

,

(
1
2

)2

∗ 1
2
=

(
1
2

)3

,

(
1
2

)3

∗ 1
2
=

(
1
2

)4

P

(
1
2

)
= 2 ∗

(
1
2

)4

+ 3 ∗
(

1
2

)3

− 3 ∗
(

1
2

)2

+ 5 ∗ 1
2
− 1 =

5
4

of multiplications: 7
of additions: 4

15 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)

P(x) = 2x4 + 3x3 − 3x2 + 5x − 1.

Use as few additions and multiplications as possible

Method 3: Nested multiplication

P (x) = −1 + x
(
5 − 3x + 3x2 + 2x3)

= −1 + x
(
5 + x

(
−3 + 3x + 2x2))

= −1 + x ∗ (5 + x ∗ (−3 + x ∗ (3 + 2 ∗ x))) .
of multiplications: 4
of additions: 4

Further explore the problem structure;
a better method may be possible.

16 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Evaluating a polynomial

What is the best way to evaluate the following polynomial (at x = 1/2)

P(x) = 2x4 + 3x3 − 3x2 + 5x − 1.

Use as few additions and multiplications as possible
Method 3: Nested multiplication

P (x) = −1 + x
(
5 − 3x + 3x2 + 2x3)

= −1 + x
(
5 + x

(
−3 + 3x + 2x2))

= −1 + x ∗ (5 + x ∗ (−3 + x ∗ (3 + 2 ∗ x))) .
of multiplications: 4
of additions: 4

Further explore the problem structure;
a better method may be possible.

16 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Evaluating a polynomial
Horner’s method: For P(x) =

∑k
i=0 cix

i , rewrite this polynomial
Rewrite P(x) as: P(x) = c0 + x(c1 + x(c2 + x(c3 + · · ·+ x(ck))))

Multiplications: k

Additions: k

Or Rewrite P(x) as:
P(x) = c0+(x− r1)(c1+(x− r2)(c2+(x− r3)(c3+ · · ·+(x− rk)(ck))))
with r1 = r2 = · · · = 0.

Example: Evaluating the polynomial P(x) = 4x5 + 7x8 − 3x11 + 2x14.

Solution:

P(x) = x5(4 + 7x3 − 3x6 + 2x9)

= x5 ∗ (4 + x3 ∗ (7 + x3 ∗ (−3 + x3 ∗ (2)))).

(7 *, 3 +)

17 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Evaluating a polynomial
Horner’s method: For P(x) =

∑k
i=0 cix

i , rewrite this polynomial
Rewrite P(x) as: P(x) = c0 + x(c1 + x(c2 + x(c3 + · · ·+ x(ck))))

Multiplications: k

Additions: k

Or Rewrite P(x) as:
P(x) = c0+(x− r1)(c1+(x− r2)(c2+(x− r3)(c3+ · · ·+(x− rk)(ck))))
with r1 = r2 = · · · = 0.

Example: Evaluating the polynomial P(x) = 4x5 + 7x8 − 3x11 + 2x14.

Solution:

P(x) = x5(4 + 7x3 − 3x6 + 2x9)

= x5 ∗ (4 + x3 ∗ (7 + x3 ∗ (−3 + x3 ∗ (2)))).

(7 *, 3 +)
17 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Binary numbers
Binary numbers are expressed as

. . . b2b1b0.b−1b−2 . . . ,

where each bi ∈ {0, 1}. To the base 10 equivalent number, we have

. . . b222 + b121 + b020 + b−12−1 + b−22−2 . . .

Representing numbers
Binaries: (100.0)2, (1111.0)2, (0.0)2
Decimals: (4.0)10, (15.0)10, (0.0)10

We have

(100.0)2 = (4.0)10

(1111.0)2 = (15.0)10, . . .

18 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Binary numbers
Decimal to Binary: Given any decimal number (x)10 = (y)10 + (z)10,
where (y)10 is the integer part and (z)10 is the fractional part. For the
integer part (y)10, we have

(y)10 =

⌊
(y)10

2

⌋
· 2 + (y)10%2

Key idea: Start recording the calculated remainders from the decimal point
and move sequentially from right to left. Example: (53)10

53/2 = 26 R 1
26/2 = 13 R 0
13/2 = 6 R 1
6/2 = 3 R 0
3/2 = 1 R 1
1/2 = 0 R 1.

(53)2 = 110101

19 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Binary numbers
Decimal to Binary: Given any decimal number (x)10 = (y)10 + (z)10,
where (y)10 is the integer part and (z)10 is the fractional part. For fractional
part (z)10, we have

(z)10 · 2 = Integer part of (z)10 · 2 + fractional part of (z)10 · 2

Key idea: Start recording the calculated integers from the decimal point and
move sequentially from left to right. Example: (0.7)10

.7 × 2 = 1 + .4

.4 × 2 = 0 + .8

.8 × 2 = 1 + .6

.6 × 2 = 1 + .2

.2 × 2 = 0 + .4

.4 × 2 = 0 + .8.

(0.7)2 = 0.10110

20 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Binary numbers

Binary to decimal: For the integer part, simply add up powers of 2 as we
did before. The binary number (10101)2 is simply
1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = (21)10. Fractional part, if the
fractional part is finite (a terminating base 2 expansion), proceed the same
way. For example,

(.1011)2 =
1
2
+

1
8
+

1
16

=

(
11
16

)
10
.

What about x = (0.1011)2?

Try to use the following trick

24x = 1011.1011
x = 0000.1011

Subtracting yields (15)10x = (1011)2 = (11)10 and x = 11/15.

21 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Binary numbers

Binary to decimal: For the integer part, simply add up powers of 2 as we
did before. The binary number (10101)2 is simply
1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = (21)10. Fractional part, if the
fractional part is finite (a terminating base 2 expansion), proceed the same
way. For example,

(.1011)2 =
1
2
+

1
8
+

1
16

=

(
11
16

)
10
.

What about x = (0.1011)2? Try to use the following trick

24x = 1011.1011
x = 0000.1011

Subtracting yields (15)10x = (1011)2 = (11)10 and x = 11/15.

21 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Floating point representation
Many real-world numbers

π ≈ 3.141592653589793238462643 . . .
e ≈ 2.718281828459045235360287 . . .
Planck constant: h = 6.62607015 × 10−34J · Hz−1

Electron mass: me ≈ 9.1093837015(28)× 10−31kg

Speed of light: c = 2.99792458 × 108m/s

Between 1078 to 1082 atoms in the observable universe

Any given real number (x)10 can be written in the form

Scientific notations: (x)10 = ±m × 10n, (1)

where n is the power and m is the mantissa.

How to save these scientific numbers into a computer?

22 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Floating point representation
Many real-world numbers

π ≈ 3.141592653589793238462643 . . .
e ≈ 2.718281828459045235360287 . . .
Planck constant: h = 6.62607015 × 10−34J · Hz−1

Electron mass: me ≈ 9.1093837015(28)× 10−31kg

Speed of light: c = 2.99792458 × 108m/s

Between 1078 to 1082 atoms in the observable universe
Any given real number (x)10 can be written in the form

Scientific notations: (x)10 = ±m × 10n, (1)

where n is the power and m is the mantissa.

How to save these scientific numbers into a computer?
22 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Floating point representation - IEEE 754

IEEE 754-1985,2008,2019 Authors

Real Implementations: C/C++, Matlab, Fortran, Python, Julia, Java, ...

Adopted in almost all programming languages!
23 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Floating point representation - IEEE 754

A floating point number consists of three parts: the sign (+or-), a mantissa,
which contains the string of significant bits, and an exponent. The three
parts are stored together in a single computer word.

precision sign exponent mantissa total bits
single 1 8 23 32
double 1 11 52 64
long double 1 15 64 80

IEEE standardized floating-point number
The form of a normalized IEEE floating point number is

±1.bbb . . . b × 2p,

where b ∈ {0, 1}, p ∈ Z.

24 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Floating point representation - Double precision

A binary number is stored as a normalized floating point number: for
example, the decimal number 9, which is (1001)2 in binary, would be stored
as

+1.001 × 23. (2)

For double precision, exponent length M = 11 and mantissa length N = 52.
Example: real number 1

+1. 00 × 20,

where boxed are 52 bits of the mantissa. The next floating point number
greater than 1 is

+1. 0001 × 20,

which equals to 1 + 2−52.

25 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Machine epsilon ϵmach

Definition 2.1 (Machine epsilon)
The number machine epsilon, denoted ϵmach, is the distance between 1 and
the smallest floating point number greater than 1. For the IEEE double
precision floating point standard,

ϵmach = 2−52 (3)

The decimal number 9.4 = (1001.0110)2 is left-justified as

+1. 0010110011001100110011001100110011001100110011001100 110 . . .× 23,

where we have boxed the first 52 bits of the mantissa.

Question: How do we deal with these remaining infinite binary numbers?

26 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Truncation/Rounding
Chopping

It throws away the bits that fall off the end.
It is biased (Why ?)

Rounding (IEEE Rounding to Nearest Rule):
if bit 53 is 1, then add 1 to bit 52 (round up)
if bit 53 is 0, then add 0 to bit 52 (round down)
Exception: if the bits following bit 52 are 10000 . . . (that is the value
2−53), exactly halfway between up and down, to avoid bias, round up
or round down according to which choice makes the final bit 52
equal to 0.

There are two equally distant floating point numbers to round to, should be
decided in a way that doesn’t prefer up or down systematically. This is to try
to avoid the possibility of an unwanted slow drift in long calculations due
simply to a biased rounding.

27 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

IEEE Rounding to Nearest Rule
Given number x , we denote the number of IEEE Rounding to Nearest Rule
by fl(x). There are two steps from x to fl(x): Example, to find fl(1/6), note
that 1/6 = 0.001 = 0.001010101 . . . in binary.

Justify

+1. 01 0101 . . .× 2−3

Round
fl(1/6) = +1. 01 × 2−3

Example: To find fl(11.3), note that 11.3 is equal to 1011.01001 in binary.
Justify

+1. 0110100110011001100110011001100110011001100110011001 1001 . . .× 23

Round
fl(11.3) = +1. 0110100110011001100110011001100110011001100110011010 × 23

28 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Rounding error
Example: 9.4 = (1001.0110)2

9.4 = +1. 0010110011001100110011001100110011001100110011001100 110 . . .×23,

where we have boxed the first 52 bits of the mantissa.

fl(9.4) = +1. 0010110011001100110011001100110011001100110011001101 ×23,

To measure the rounding error,

the discarded : .1100 × 2−52 × 23 = .0110 × 2−51 × 23 = .4 × 2−48

rounded into : 2−52 × 23 = 2−49.

We have

fl(9.4) = 9.4 + 2−49 − 0.4 × 2−48

= 9.4 + (1 − 0.8)2−49

= 9.4 + 0.2 × 2−49,

where we call 0.2 × 2−49 the rounding error.
29 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

How to measure the error?

x the quantity we want to store/compute
xc the quantity we stored and computed

To measure the error, we can check
absolute error |xc − x |
relative error |xc−x |

|x | when x ̸= 0

Theorem 2.2 (Relative error)
In the IEEE machine arithmetic model, the relative rounding error of fl(x) is
no more than one-half machine epsilon

|fl(x)− x |
|x |

≤ 1
2
ϵmach.

30 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Machine representation
How to represent a double precision floating point number (x)?

exponent
(11 bit)sign

fraction
(52 bit)

63 52 0

Each word has the form

se1e2e3e4 . . . e11b1b2b3b4 . . . b52 (4)

s = 0 for positive number, s = 1 for negative number.
exponent e1e2e3e4 . . . e11

00000000000: 0
00000000001 — 11111111110: 1 — 2046. For each m, we add
210 − 1 = 1023. So, exponents will be in range [−1022, 1023].
11111111111: 2047

31 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Machine representation

For example, the number 1, or

1 = +1. 00 ×20,

has double precision machine number form

0 01111111111 00 .

The special exponent value 2047:
2047: used to represent ∞ if the mantissa bit string is all zeros and
NaN (not a number), otherwise. So, first 12 bits of Inf is
0111 1111 1111 and -Inf is 1111 1111 1111 , the rest 52 bits are
all zero.
The machine number NaN also begins 1111 1111 1111 but has a
nonzero mantissa.

32 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Machine representation

machine number Example Hex format
+Inf 1/0 7FF0000000000000
-Inf -1/0 FFF0000000000000
NaN 0/0 FFFxxxxxxxxxxxxx

The special exponent value 0: e1e2 . . . e11 = (00000000000)2, to present
non-normalized floating point number.

±0. b1b2 . . . b52 × 2−1022 (5)

We can these as subnormal floating point numbers
Question: smallest representable positive number

2−52 × 2−1022 = 2−1074.

0 00000000000 0001 .

33 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Machine representation

machine number Example Hex format
+Inf 1/0 7FF0000000000000
-Inf -1/0 FFF0000000000000
NaN 0/0 FFFxxxxxxxxxxxxx

The special exponent value 0: e1e2 . . . e11 = (00000000000)2, to present
non-normalized floating point number.

±0. b1b2 . . . b52 × 2−1022 (5)

We can these as subnormal floating point numbers
Question: smallest representable positive number

2−52 × 2−1022 = 2−1074.

0 00000000000 0001 .

33 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Machine representation

Subnormal numbers include the most important number 0. Two 0s (They
are treated as the same number):

+0: (0000000000000000)16

-0: (8000000000000000)16

What about numbers beyond?
overflow: too large to be stored as a regular floating point number.
For double-precision floating point numbers, this means the exponent is
greater than 1023. Most computer languages will convert an overflow
condition to machine number +Inf, -Inf, or NaN.
underflow: double precision, this occurs for numbers less than 2−1074.

34 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Loss of significant digits

Suppose we have two seven-significant digits; we need to subtract them:

123.4567 − 123.4566 = 000.0001.

The result has only one-digit accuracy.
Example:

√
9.01 − 3 ≈ 3.0016662 − 3 = 0.0016662, if we save the result on

a 3-decimal-digit computer, then the result will be 0. Can we fix it?

Avoid
this issue by rewriting the expression:

√
9.01 − 3 =

(
√

9.01 − 3)(
√

9.01 + 3)√
9.01 + 3

35 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Loss of significant digits

Suppose we have two seven-significant digits; we need to subtract them:

123.4567 − 123.4566 = 000.0001.

The result has only one-digit accuracy.
Example:

√
9.01 − 3 ≈ 3.0016662 − 3 = 0.0016662, if we save the result on

a 3-decimal-digit computer, then the result will be 0. Can we fix it? Avoid
this issue by rewriting the expression:

√
9.01 − 3 =

(
√

9.01 − 3)(
√

9.01 + 3)√
9.01 + 3

35 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Loss of significant digits
Example : E1 =

√
x2 + 1 − 1, E2 =

x2
√
x2 + 1 + 1

x E1 E2
1.000000000000000e+00 4.142135623730951e-01 4.142135623730951e-01
1.000000000000000e-01 4.987562112088950e-03 4.987562112089027e-03
1.000000000000000e-02 4.999875006239662e-05 4.999875006249610e-05
1.000000000000000e-03 4.999998750587764e-07 4.999998750000624e-07
1.000000000000000e-04 4.999999969612645e-09 4.999999987500000e-09
1.000000000000000e-05 5.000000413701855e-11 4.999999999875001e-11
1.000000000000000e-06 5.000444502911705e-13 4.999999999998750e-13
1.000000000000000e-07 4.884981308350689e-15 4.999999999999987e-15
1.000000000000000e-08 0.000000000000000e+00 5.000000000000001e-17
1.000000000000000e-09 0.000000000000000e+00 5.000000000000000e-19
1.000000000000000e-10 0.000000000000000e+00 5.000000000000000e-21
9.999999999999999e-12 0.000000000000000e+00 5.000000000000000e-23
1.000000000000000e-12 0.000000000000000e+00 5.000000000000000e-25
1.000000000000000e-13 0.000000000000000e+00 5.000000000000000e-27
1.000000000000000e-14 0.000000000000000e+00 5.000000000000000e-29

36 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Loss of significant digits
Example : E1 =

√
x2 + 1 − 1, E2 =

x2
√
x2 + 1 + 1

x E1 E2
1.000000000000000e+00 4.142135623730951e-01 4.142135623730951e-01
1.000000000000000e-01 4.987562112088950e-03 4.987562112089027e-03
1.000000000000000e-02 4.999875006239662e-05 4.999875006249610e-05
1.000000000000000e-03 4.999998750587764e-07 4.999998750000624e-07
1.000000000000000e-04 4.999999969612645e-09 4.999999987500000e-09
1.000000000000000e-05 5.000000413701855e-11 4.999999999875001e-11
1.000000000000000e-06 5.000444502911705e-13 4.999999999998750e-13
1.000000000000000e-07 4.884981308350689e-15 4.999999999999987e-15
1.000000000000000e-08 0.000000000000000e+00 5.000000000000001e-17
1.000000000000000e-09 0.000000000000000e+00 5.000000000000000e-19
1.000000000000000e-10 0.000000000000000e+00 5.000000000000000e-21
9.999999999999999e-12 0.000000000000000e+00 5.000000000000000e-23
1.000000000000000e-12 0.000000000000000e+00 5.000000000000000e-25
1.000000000000000e-13 0.000000000000000e+00 5.000000000000000e-27
1.000000000000000e-14 0.000000000000000e+00 5.000000000000000e-29

36 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Loss of significant digits

Example : E1 =
1 − cos x

sin2 x
, E2 =

1
1 + cos x

.

Notice that E1 = E2. But, evaluate them at points near x = 0, we have

x E1 E2
1.000000000000000 0.649223205204762 0.649223205204762
0.100000000000000 0.501252086288566 0.501252086288571
0.010000000000000 0.500012500208481 0.500012500208336
0.001000000000000 0.500000124992189 0.500000125000021
0.000100000000000 0.499999998627931 0.500000001250000
0.000010000000000 0.500000041386852 0.500000000012500
0.000001000000000 0.500044450291337 0.500000000000125
0.000000100000000 0.499600361081322 0.500000000000001
0.000000010000000 0.000000000000000 0.500000000000000
0.000000001000000 0.000000000000000 0.500000000000000
0.000000000100000 0.000000000000000 0.500000000000000
0.000000000010000 0.000000000000000 0.500000000000000
0.000000000001000 0.000000000000000 0.500000000000000
0.000000000000100 0.000000000000000 0.500000000000000
0.000000000000010 0.000000000000000 0.500000000000000

37 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Loss of significant digits

Example: Find roots of x2 + 912x = 3.

Consider two roots

x =
−b ±

√
b2 − 4ac
2a

It gives

x =
−912 ±

√
924 + 4(3)
2

and

x1 = −2.8424 × 1011, x2 =
−912 +

√
924 + 4(3)
2

.

MATLAB calculates x2 = 0.
38 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Exp-normalize trick

Consider the sigmoid function and its derivative

σ(x) =
1

1 + e−x
, σ′(x) = σ(x)(1 − σ(x))

The sigmoid and its derivative are often used in logistic regression for binary
classification.

It is better to consider the following
if x > 0, then calculate σ(x) as σ(x) = 1

1+e−x

if x ≤ 0, then calculate σ(x) as σ(x) = ex

1+ex

39 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Exp-normalize trick

Consider the sigmoid function and its derivative

σ(x) =
1

1 + e−x
, σ′(x) = σ(x)(1 − σ(x))

The sigmoid and its derivative are often used in logistic regression for binary
classification. It is better to consider the following

if x > 0, then calculate σ(x) as σ(x) = 1
1+e−x

if x ≤ 0, then calculate σ(x) as σ(x) = ex

1+ex

39 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Exp-normalize trick

Suppose you want to evaluate a probability distribution π parametrized by a
vector x ∈ Rn as the follows:

πi =
exp(xi)∑n
j=1 exp(xj)

. (6)

When x = [1,−5, 1000], it will overflow.

But, we can reformulate it as

πi =
exp(xi − b)exp(b)∑n
j=1 exp(xj − b)exp(b)

=
exp(xi − b)∑n
j=1 exp(xj − b)

, (7)

where b = max{xi |i = 1, 2, . . . , n}.

40 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Exp-normalize trick

Suppose you want to evaluate a probability distribution π parametrized by a
vector x ∈ Rn as the follows:

πi =
exp(xi)∑n
j=1 exp(xj)

. (6)

When x = [1,−5, 1000], it will overflow. But, we can reformulate it as

πi =
exp(xi − b)exp(b)∑n
j=1 exp(xj − b)exp(b)

=
exp(xi − b)∑n
j=1 exp(xj − b)

, (7)

where b = max{xi |i = 1, 2, . . . , n}.

40 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

The Log-Sum-Exp Trick

We still assume that πi =
exp(xi)∑n
j=1 exp(xj)

. In many machine learning problems,

we want to calculate log-distribution

log πi = log
exp(xi)∑n
j=1 exp(xj)

(8)

How to avoid overflow?

Notice that

log πi = log
exp(xi)∑n
j=1 exp(xj)

= xi − logsumexp(x), (9)

where logsumexp(x) = b + log
∑n

j=1 exp(xj − b). Typically,
b = max{xi |i = 1, 2, . . . , n}. Check more in PyTorch:
https://pytorch.org/docs/stable/generated/torch.logsumexp.html

41 / 60

https://pytorch.org/docs/stable/generated/torch.logsumexp.html

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

The Log-Sum-Exp Trick

We still assume that πi =
exp(xi)∑n
j=1 exp(xj)

. In many machine learning problems,

we want to calculate log-distribution

log πi = log
exp(xi)∑n
j=1 exp(xj)

(8)

How to avoid overflow? Notice that

log πi = log
exp(xi)∑n
j=1 exp(xj)

= xi − logsumexp(x), (9)

where logsumexp(x) = b + log
∑n

j=1 exp(xj − b). Typically,
b = max{xi |i = 1, 2, . . . , n}. Check more in PyTorch:
https://pytorch.org/docs/stable/generated/torch.logsumexp.html

41 / 60

https://pytorch.org/docs/stable/generated/torch.logsumexp.html

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Quick Summary

1 Try to avoid the amplification and propagation of rounding errors.
2 Try to avoid subtracting two nearly equal numbers.
3 Try to avoid large numbers "swallowing" small numbers.
4 Try to avoid having a divisor with a very small absolute value.

42 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Solving Equations

Definition 3.1 (Root and problem definition)
Given a function f : R → R, we say that f (x) has a root at x = r if
f (r) = 0.

How do we know a root exists?
If the root exists, how can we find it?

To check the existence of the root:

Theorem 3.2
Let f be continuous on [a, b], satisfying f (a)f (b) < 0. Then f has a root in
[a, b], that is, there exists a number r ∈ [a, b] and f (r) = 0.

Let f (x) := ex − sin x − 2. Then,
f (0) = −1 < 0, f (π) = eπ − 2 > 0. It has a root in [0, π].

43 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Solving Equations

Definition 3.1 (Root and problem definition)
Given a function f : R → R, we say that f (x) has a root at x = r if
f (r) = 0.

How do we know a root exists?
If the root exists, how can we find it?

To check the existence of the root:

Theorem 3.2
Let f be continuous on [a, b], satisfying f (a)f (b) < 0. Then f has a root in
[a, b], that is, there exists a number r ∈ [a, b] and f (r) = 0.

Let f (x) := ex − sin x − 2. Then,
f (0) = −1 < 0, f (π) = eπ − 2 > 0. It has a root in [0, π].

43 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Bisection Method

Assume f has a root r ∈ [a, b], how to find r?
Naive method: scan all values with d precision from a to b. But the
time complexity will be O

(
(b − a)10d

)
.

Intuition: Find a way to “squash” the interval [a, b], so that location of r
can be narrowed down.

Idea of the bisection: Find the middle point c = (a+ b)/2 if f (a)f (c) < 0,
then narrow down the interval [a, b] into [a, c] and let b = c ; if f (c) = 0,
return r = c ; if f (b)f (c) < 0, then narrow down the interval [a, b] into
[b, c] and let a = c . Repeat this step until (b − a)/2 is small enough.

44 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Bisection Method

Assume f has a root r ∈ [a, b], how to find r?
Naive method: scan all values with d precision from a to b. But the
time complexity will be O

(
(b − a)10d

)
.

Intuition: Find a way to “squash” the interval [a, b], so that location of r
can be narrowed down.

Idea of the bisection: Find the middle point c = (a+ b)/2 if f (a)f (c) < 0,
then narrow down the interval [a, b] into [a, c] and let b = c ; if f (c) = 0,
return r = c ; if f (b)f (c) < 0, then narrow down the interval [a, b] into
[b, c] and let a = c . Repeat this step until (b − a)/2 is small enough.

44 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Bisection Method
Algorithm 1 Bisection(f , a, b, ϵ)

1: Input: [a, b] and f are such that f (a)f (b) < 0, tolerance ϵ
2: Output: an (approximate) root of f
3: while (b − a)/2 > ϵ do
4: c = (a+ b)/2
5: if f (c) = 0 then
6: return c
7: end if
8: if f (a)f (c) < 0 then
9: b = c

10: else
11: a = c
12: end if
13: end while
14: Return (a+ b)/2

45 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Accuracy and time complexity analysis

Accuracy: After n iterations, we have cn = (an + bn)/2. We measure the
accuracy of the solution by the solution error, |r − cn|. We have

|r − cn| <
b − a

2n+1 (10)

Proof.
At the beginning (n = 0), the distance between cn and r must be less than
(b − a)/2. After each iteration, the interval is narrowed down by the half of
(b−a). Hence, after n iterations, |r−cn| must be less than (b−a)/2n+1. ■

Time complexity: The time complexity depends on how many function
evaluations needed. The number of function evaluations after n iterations of
Bisection is n + 2. Hence, O(n + 2).

46 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Accuracy and iterations

Definition 3.3 (p correct places (p))

A solution is correct within p decimal places if the error is less than 0.5×10−p.

Example 3.4
Use the Bisection method to find a root of f (x) = cos x − x in [0, 1] to
within 6 correct places. How many steps will be needed?

Solution: n = 20.

47 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Accuracy and iterations

Definition 3.3 (p correct places (p))

A solution is correct within p decimal places if the error is less than 0.5×10−p.

Example 3.4
Use the Bisection method to find a root of f (x) = cos x − x in [0, 1] to
within 6 correct places. How many steps will be needed?

Solution: n = 20.

47 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Fixed-Point Iteration
Using a calculator (in radian mode), if you keep pressing the cos key, you’ll
find that no matter which number you start with, it will eventually converge
to: 0.7390851332. It actually solves cos x − x = 0.

Fixed Point: The number r ∈ R is a fixed point of g if g(r) = r .

Algorithm 2 FPI(g , x0)

1: for i = 0, 1, 2, . . . , do
2: xi+1 = g(xi)
3: end for

Theorem 3.5 (The convergences of FPI)
If g is continuous and xi converges to r , then r is a fixed point.
To prove, note that

g(r) = g

(
lim
i→∞

xi

)
= lim

i→∞
g(xi) = lim

i→∞
xi+1 = r .

48 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Fixed-Point Iteration - Example

FPI solves the fixed point problem g(x) = x . Can every equation f (x) = 0
be turned into a fixed-point problem g(x) = x?

Yes, just let
g(x) = f (x) + x! But, if we know the analytic form of f , we can have
different fixed-point reformulations. For example, f (x) = x3 + x − 1, then
we have the following possibilities

1 x = 1 − x3, then let g1(x) = 1 − x3

2 x = 3
√

1 − x , then let g2(x) =
3
√

1 − x

3 add 2x3 on both sides, we have 3x3 + x = 1 + 2x3, that is, x = 1+2x3

1+3x2 ;

then let g3(x) =
1+2x3

1+3x2 .

49 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Fixed-Point Iteration - Example

FPI solves the fixed point problem g(x) = x . Can every equation f (x) = 0
be turned into a fixed-point problem g(x) = x? Yes, just let
g(x) = f (x) + x! But, if we know the analytic form of f , we can have
different fixed-point reformulations. For example, f (x) = x3 + x − 1, then
we have the following possibilities

1 x = 1 − x3, then let g1(x) = 1 − x3

2 x = 3
√

1 − x , then let g2(x) =
3
√

1 − x

3 add 2x3 on both sides, we have 3x3 + x = 1 + 2x3, that is, x = 1+2x3

1+3x2 ;

then let g3(x) =
1+2x3

1+3x2 .

49 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Fixed-Point Iteration (FPI)
Let f (x) = x3 + x − 1 = 0, we can have the following 3 different forms of g

g1(x) := 1 − x3, g2(x) :=
3
√

1 − x , g3(x) =
1 + 2x3

1 + 3x2

t xt = g1(xt−1) xt = g2(xt−1) xt = g3(xt−1)
0 0.50000000 0.50000000 0.50000000
1 0.87500000 0.79370053 0.71428571
2 0.33007813 0.59088011 0.68317972
3 0.96403747 0.74236393 0.68232842
4 0.10405419 0.63631020 0.68232780
5 0.99887338 0.71380081 0.68232780
6 0.00337606 0.65900615 0.68232780
7 0.99999996 0.69863261 0.68232780
8 0.00000012 0.67044850 -
9 1.00000000 0.69072912 -
10 0.00000000 0.67625892 -
11 1.00000000 0.68664554 -
12 0.00000000 0.67922234 -
13 - 0.68454401 -

All three iteration procedure
starts from x0 = 0.5. Some
observations:

xt+1 = g1(xt) cannot
converge properly.
xt+1 = g2(xt) converges
but relatively slow.
xt+1 = g3(xt) converges
very fast.

50 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Fixed-Point Iteration - Example

f (x) = x3 + x − 1. Iterations of three different methods.

51 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Convergence

Linear Convergence: Let et = |r − xt | denote the error at step t of an
iterative method. If

lim
t→∞

et+1

et
= S < 1, (11)

the method is said to obey linear convergence with rate S .
Locally convergent: An iterative method is called locally convergent to r if
the method converges to r for initial guesses sufficiently close to r .

Theorem 3.6 (Linear convergence of FPI)
Assume that g is continuously differentiable, that g(r) = r , and that S =
|g ′

(r)| < 1. Then Fixed-Point Iteration converges linearly with rate S to
the fixed point r for initial guesses sufficiently close to r .

52 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Newton’s method
Key Idea: If f is differentiable, we draw the tangent line at xt and use the
intersection of this tangent with the x-axis as an approximate.

One point on the tangent line is (x0, f (x0)).
The point-slope formula for the equation of
a line is y − f (x0) = f ′(x0)(x − x0). The
intersection point can be found by letting
y = 0. That is, y − f (x0) = f ′(x0)(x − x0)

x − x0 = − f (x0)

f ′(x0)
,→ x = x0 −

f (x0)

f ′(x0)
.

Algorithm 3 Newton(f , x0)

1: x0 = initial guesses
2: for t = 0, 1, 2, . . . , do
3: xt+1 = xt − f (xt)/f

′(xt)
4: end for
5: Return xt+1

53 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Newton’s method

Algorithm 4 Newton(f , x0)

1: x0 = initial guesses
2: for t = 0, 1, 2, . . . , do
3: xt+1 = xt − f (xt)

f ′(xt)

4: end for
5: Return xt+1

Consider f (x) = x3 + x − 1 and use the New-
ton’s method to find a root of f (x) = 0. The
iteration table of the Newton’s method shows
as the following:

t xt et = |xt − x∗| et/e2
t−1

0 -0.69999999999999995559107901499374 1.38232780e+00 -
1 0.12712550607287453896532269936870 5.55202298e-01 0.290556
2 0.95767811917566125767820039982325 2.75350315e-01 0.893271
3 0.73482779499450145976879866793752 5.24999912e-02 0.692449
4 0.68459177068492671480726130539551 2.26396686e-03 0.821394
5 0.68233217420448422085854645047220 4.37037646e-06 0.852666
6 0.68232780384433244780240102045354 1.63131730e-11 0.854084
7 0.68232780382801927476776882031118 0.00000000e+00 -
8 0.68232780382801927476776882031118 - -

54 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Newton’s method - Convergence

Definition 3.7 (Quadratically convergent)
Let et = |xt − x∗| denote the error after step t of an iterative method. The
iteration is quadratically convergent if

M = lim
t→∞

et+1

e2
t

< ∞. (12)

Theorem 3.8 (Quadratically convergent of the Newton’s)
Let f be twice continuously differentiable and f (x∗) = 0. If f ′(x∗) ̸= 0, then
Newton’s Method is locally and quadratically convergent to x∗. The error et
at step t satisfies

lim
t→∞

et+1

e2
t

= M, where M =
f

′′
(x∗)

2f ′(x∗)
. (13)

55 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Secant method
The Newton’s method converges very fast. But, it needs to have derivative
information, which may not be available. Can we do any approximation
based the Newton’s method?

Key Idea: Approximate the derivative by constructing a secant line!

An approximation of f ′(xt) atxt : f ′(xt) ≈
f (xt)− f (xt−1)

xt − xt−1
. (14)

Algorithm 5 Secant(f , x0, x1)

1: x0, x1 be initial guesses
2: for t = 1, 2, . . . , do
3: xt+1 = xt − f (xt)(xt−xt−1)

f (xt)−f (xt−1)

4: end for
5: Return xt+1

56 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Secant method
The Newton’s method converges very fast. But, it needs to have derivative
information, which may not be available. Can we do any approximation
based the Newton’s method?
Key Idea: Approximate the derivative by constructing a secant line!

An approximation of f ′(xt) atxt : f ′(xt) ≈
f (xt)− f (xt−1)

xt − xt−1
. (14)

Algorithm 6 Secant(f , x0, x1)

1: x0, x1 be initial guesses
2: for t = 1, 2, . . . , do
3: xt+1 = xt − f (xt)(xt−xt−1)

f (xt)−f (xt−1)

4: end for
5: Return xt+1

56 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Example
Consider f (x) = x3 + x − 1 and use the Secant method to find a root of
f (x) = 0. Let x0 = 0, x1 = 1 and check f (x0)f (x1) = −1 < 0.
The iteration table of the Secant method shows as the following:

t xt |xt − x∗|
0 0.00000000000000 6.8232e-01
1 1.00000000000000 3.1767e-01
2 0.50000000000000 1.8232e-01
3 0.63636363636364 4.5964e-02
4 0.69005235602094 7.7245e-03
5 0.68202041964819 3.0738e-04
6 0.68232578140989 2.0224e-06
7 0.68232780435903 5.3100e-10
8 0.68232780382802 8.8817e-16
9 0.68232780382802 0.0000e+00

57 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Summary of secant method

Advantages:
1 Under some conditions, it converges faster than a linear rate.
2 It does not require the derivative information.
3 Compared with Newton’s method, it requires only one function

evaluation per iteration.
Disadvantages:

1 It may not converge.
2 There is no guaranteed error bound for the computed iterates.
3 It is likely to have difficulty if f ′(x∗) = 0. This means the x-axis is

tangent to the graph of y = f (x) at x = x∗.

58 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Brent’s method

Can we take advantage of the above methods?

Richard Brent devised a method combining the advantages of the bisection
and secant methods.

It is guaranteed to converge.
It has an error bound, which will converge to zero in practice.
For most problems f (x) = 0, with f (x) differentiable about the root x∗,
the method behaves like the secant method.
In the worst case, it is not too much worse in its convergence than the
bisection method.

59 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Brent’s method

Can we take advantage of the above methods?
Richard Brent devised a method combining the advantages of the bisection
and secant methods.

It is guaranteed to converge.
It has an error bound, which will converge to zero in practice.
For most problems f (x) = 0, with f (x) differentiable about the root x∗,
the method behaves like the secant method.
In the worst case, it is not too much worse in its convergence than the
bisection method.

59 / 60

Course Introduction Fundamentals and Computer Arithmetic Solving Nonlinear Equations

Practical Implementations

Implementations
Matlab: fzero
https://www.mathworks.com/help/matlab/ref/fzero.html
Python:

scipy.optimize.brenth: Find a root of a function in a bracketing interval
using Brent’s method with hyperbolic extrapolation.
scipy.optimize.bisect: Find root of a function within an interval using
bisection.
scipy.optimize.ridder: Find a root of a function in an interval using
Ridder’s method.
scipy.optimize.brentq: Find a root of a function in a bracketing interval
using Brent’s method.

60 / 60

https://www.mathworks.com/help/matlab/ref/fzero.html

	Course Introduction
	Fundamentals and Computer Arithmetic
	Solving Nonlinear Equations

