Recap of last lecture $[0]$ Calculate \sqrt{a} : $\gamma_{\text{ten}} = \frac{1}{2}(\chi_{\text{t}} + \frac{a}{\chi_{\text{t}}})$ $m = 2.52$ Computer Arithmetic Float-wint numbers, round off errors $\lfloor \int \frac{\pi}{x} \rfloor \leq \frac{1}{2} \epsilon_m$ double: $x = (-1)^5$. 1. $b_1b_2 \cdots b_{32}x_2^m$, m = $(e_{11})_2^{-1023}$ E_{131} B_{132} B_{131} = $\begin{cases} 0 & 1 \end{cases}$ is E_{131} if E_{131} is E_{131} if E_{131} is E_{131} if E_{131} is E_{131} 2047 : 103 if b_{15} ≥ 0 , $N_a N$ if b_{15} , $\downarrow 0$ lossof significant

8. Solve
$$
f(x_0 = 0
$$

\n8. Since $f(x_1, 0, 0, 1)$ if $f(x_0) \cdot f(b) \le 0$.

\n9. In itempty: 0.42 or only 0.44

\n1. $11 - f_{n1} \le \frac{b-a}{2^{h+1}}$

Today's lecture :

\n0. 06
$$
\{ +, -, x, + \}
$$
, $x \circ y = v.5$. $\{C x \circ y : \sum_{i=1}^{n} x_i : \text{naive sum, pairwise sum} \}$

\n2. $\sqrt[n]{P}$, $\sqrt[n]{P}$

IEEE 784 flex yo flly ^y will havethefollowing steps StreamingSIMDExt ² 1 load ^x and y into registers SSE2 AVX MOVED Mmo Ex duancedVector MUVSD Xmm1 Ty ² align the exponents ^e in mineexey 3 1 mantissas by by extra bitsofprecision 87FPU uses ⁸⁰bits antissa Guard bits extra bit in SSE2 AVX ⁴ normalized rounding save y flex fly rounding mayuse extrabits Rey's E2 AVX flat fly ^s ^s fles rounding fl toy fles fl toy xoy Hg is 12 ⁴ single 2 ⁵³ double Weassume fly fly flexoy are representable Rel error does not makesense when it is overflowor underflow Summation IE ^X

. Naive sum: Let $\{x_i\}_{i=1}^n$ be positive positive muchine numbers in a computer whose unit roundoff error is 2. $S = \sum_{i=1}^{n} x_i$ $\sum_{i=1}^{k} x_i$ $\frac{s - \frac{1}{k}}{s}$ さんりつ こりく s $\hat{S} = 0$ f *b*y icl.2,… n :
S+z x₁ $S_{\mathbf{A}}$ = $\sum_{i=1}^{\mathbf{B}} x_i \leftrightarrow \hat{S}_{\mathbf{A}}$ return s $\int_{0}^{1} S_{k+n} = S_{k} + X_{k+n}$ $\int_{0}^{1} S_{k+n} = \int_{0}^{1} \iint_{0}^{1} S_{k} + X_{k+n}$ def. $\rho_{k} = \frac{s_{k} - s_{k}}{s_{k}}$ S_{k} | $\uparrow k$ | \leq ($\uparrow \uparrow$) - $=$ 1+ $\binom{n}{1}$. $\left\{ \begin{array}{c} n \\ 2 \end{array} \right\}$. $\left\{ \begin{array}{c} 2 \\ 4 \end{array} \right\}$. $\frac{p_{\text{min}}}{q_{\text{min}}}\cdot \frac{1}{q_{\text{min}}}\cdot \frac{1$ $\frac{s-s}{s}$ | $\leq \frac{1-\gamma}{1-\gamma}$ $\frac{1-\sum_{i=1}^{n}x_i}{\sum_{i=1}^{n}x_i}$ $= O(5. h_{12}n)$ しへろ If we assure rounding errors is random \cdot naive sum: $OLE\{\sqrt{n}\}$. pairwise sum: DLE Tryn). Further reading: Handbook of floating-point Arithmetic, Muller, 2018.

Lecture-02. Solving nonlinear equations 09/11/2024 In this lecture, we nunt to solve

 $f(x) = 0$, $x \in \mathbb{R}$, $f \in C(\mathbb{R})$ is continuous. We will assume $f(a)\cdot f(b) < 0$ and root $r \in [a,b]$.

 Q Fixed Point Iteration CFPI)

11. FPI :
$$
x + y = 9(x + y)
$$
 \rightarrow find $f(x)$ part $x = g(x)$
\n
$$
g(x) = \begin{cases} f(x) + x \\ x - \frac{f(x)}{f(x)} \end{cases}
$$
 m *any* ways

Main idea: Guess x_0 , compute g (x_0) . It x_0 is news to r. then $y\mapsto y$ is near to $y\in Y$.

$$
x_{t+1} = y(x_t)
$$
 until $\{x_{t+1} - x_t | \le t_0\}$
| (y(t+1) - x_t | $\le t_0$].

Convergence conalysis: $e_t z x_t - r$. ($r : s$ a fix point)

$$
2\epsilon_{H}
$$
 = $\gamma_{HH} - \gamma$ = $g(x_{E}) - g(y)$ us . $x_{t} - r$ = e_{e} .

By mean value τh m. ye c' Ia, 5], 3 S ϵ ca. b) s.t. g es $\frac{\partial^2 f}{\partial x^2}$ $\overline{b-a}$. let $\begin{cases} a = r \\ s = s \end{cases}$

$$
|g(x_{t1} - g(x_{t1})| = |g'(x_{t1})| \cdot |x_{t-1}|, \text{se} \text{conv}(r, x_{t1})|
$$
\n
$$
|e_{t+1}| = |g'(x_{t1})| \cdot |e_{t1}|, \text{to} \text{ve} \text{ve} \text{ve}}|
$$
\n
$$
\left\{\begin{array}{ll}\n1. & |g'(x_{t1})| < 1, & |e_{t+1}| > 1 \text{ecl}, \text{diverg} \text{ve}}{1. & |e_{t+1}|}, & |e_{t+1}| > 1 \text{ecl}, \text{diverg} \text{ve}}\right.\n\end{array}
$$
\n
$$
\left\{\begin{array}{ll}\n2. & 1/3 \cdot (g(t) < 1, & |e_{t+1}| < 1 \text{ecl}, \text{converg} \text{ve}}{1. & |e_{t+1}|}, & |e_{t+1}| < 1 \text{ecl}, \text{converg} \text{ve}}\right.\n\end{array}\right.
$$
\n
$$
\left\{\begin{array}{ll}\n2. & 1/3 \cdot (g(t) < 1, & |e_{t+1}| < 1 \text{ecl}, \text{converg} \text{ve}}{1. & |e_{t+1}|}, & |e_{t+1}| < 1 \text{ecl}, \\
\frac{1}{3} & 1/3 \cdot (g(t) < 1, & |e_{t+1}| > 1 \text{ecl}, \\
\frac{1}{3} & 1/3 \cdot (g(t) < 1, & |e_{t+1}| < 1, & |e_{t+1}| < 1 \text{ecl}, \\
\frac{1}{3} & 1/3 \cdot (g(t) < 1, & |e_{t+1}|) < 1, & |e_{t+1}| < 1, & |e_{t+1}| < 1, \\
\frac{1}{3} & 1/3 \cdot (g(t) < 1, & |e_{t+1}| < 1, & |e_{t+1}| < 1, & |e_{t+1}| < 1, \\
\frac{1}{3} & 1/3 \cdot (g(t) <
$$

Iteration complexity:

We want to find t,
$$
6\pi
$$
.
\n
$$
|e_{\tau}| = |\pi_{\tau} - \tau| < +b
$$
. Assume $|\xi(x_{\tau})| \leq m < 1$
\nand $X_b \in I : [x_{\tau}, x_{\tau} + c]$.
\n
$$
|e_{\tau} - e_m \cdot e_{\tau}| \cdots \leq m_{\tau} - e_m
$$
\nBut $e_{\tau} = x_{\tau} - \tau$ is mphown!

Note that $|e_{0}| = |x_{0} - r|$ and $|e_{1}| = |x_{1} - r| < |x_{0} - r|$ => $|e_{o}| = |x_{o} + | = |x_{b} - x_{b} + x_{1} - r|$ $5 1x - x_1 + 1e_1$ $f(x_0 - x_1) + m \cdot (e_0)$ $5)$ $|e_0| \leq |X_0 - X_1| / (|m|)$. $5v_1$ => let $f \in M^{2}$. $\frac{|y_{v}-x_{1}|}{1-m}$. Given let $f \in G$. => m^t: $\frac{|x_{v-}x_{1}|}{1-m}$ ≤ 2 => k > $\left\lfloor \ln \frac{2L+m}{|x_{v-}x_{1}|} / \ln m \right\rfloor$. . Example: x=gus =cosx 1g'cx) |=15inx). mx 0.845, $x_1 = 1031$ 20.5403 $2 = 0.5 \times 10^{-5}$ => k $3\sqrt{2}$ (In worst case).

Approximate fixi by linearization at xe to obtain γ_{th} To do this, draw the tangent line at x_t and use the intersection point of this line and x -axis as an approximation root. To measure the slope of gix):

$$
\frac{f(x_t)}{\Delta x_t} = f'(x_t) \text{ where } \Delta x_t := x_t - x_{t+1}
$$

Then we have the following updates

 (2) . $N_{t+1} = N_t - \Delta N_t = N$. \pm u t fixe Newton's An alternative way: the tangent line of gexs: $y - f(x_t) = f'(x_t) \cdot (x - x_t)$. letting $y = 0$, we will get the intersection point $\Rightarrow \alpha = \lambda_t - \frac{1}{f'(x_t)} := \alpha_{t+1}$

Newton's algo: Given f and f' , with $t = 0.1.2, \cdots$, it generates $\{x_t\} \to r$, defined by (r) . Kemark: Newton's alyo. can be viewed as foptimal" fixed point iteration. Recall that $FPI: \gamma_{trj} = \gamma_{CKf}$, with $g(x) = x - \frac{1}{f(x)}, \quad g(x) = 1$ $f'(x) = f(x) \cdot f'(x) - f'(x)$ $f'(x)$ ² $f'(x)$ ² So, assume that $f(w) \neq 0$. = $\frac{g(w) - \frac{1}{f(w)^2}}{f(w)^2} = 0$ Note r is the noot of $f(x)$: $f(x) = 0$. Error analysis: Recall for ϵ_0 , $\varepsilon_t = \gamma_t - \gamma$, $\frac{q\alpha_1 - \gamma - \frac{H(\kappa)}{f(\alpha_2)}}{f(\alpha_3)}$. We assume f" is continuous and r is a simple root of f , i.e., $f(r) = o f(r)$. From Newton's Iteration (1), we have $e_{t+1} = \gamma_{t+1} - r = \gamma_t - \frac{f(x_t)}{f'(x_t)} - r$ is small $e_t - \frac{f^{l(k)}}{f^{l(k)}} = \frac{(e_t - f^{l(k)}) - f^{l(k)}}{f^{l(k)}}$ we hope this part $=\frac{f''(\xi_{t})}{2f'(x_{t})}\cdot \ell_t^2$, where the last equ. follows by Taylor's theorem. Recall if f is two times differentible, then $f(x) = f(u) + f'(u) \cdot c \times -\alpha + \frac{f'(c \cdot 3)}{2} c \times -\alpha$, 2ϵ convex, a). Here $\begin{cases} x:=r & \text{if } \epsilon = x_{t}-r \\ a:=x_{t} & \text{if } \epsilon \text{ (on } r, x_{t}). \end{cases}$

0= f(r) = {c\nu + f'(k) + f'(k) + \frac{f''(f_1)}{2} (e_1)^2
\n
$$
\int_{t}^{t} t \text{ then leads to } e_{t} = \frac{f''(f_1)}{2f(k_1)} \cdot e_t^2.
$$
\nIf we assume further that
\n
$$
\int_{2}^{t} (f''(k)) = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} (f''(k)) = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \frac{1}{2} \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n
$$
\int_{2}^{t} f(k) dt = \int_{2}^{t} f(k) dt
$$
\n<math display="</p>

Convergence of Newton's method: Let's assume f"E CURI, and let r be a simple root of f . Then there is a neighbor of r and a constant M st. if Newton's stayts in that neighbor. the points $\{x_t\}$ become steadily closer to r and satisfy learn $\epsilon M \cdot |e_{\epsilon}|^2$ (t^2)

Compute Ja in our last lecture: $x_{\text{th}} = \frac{1}{2}$ $Cx_{t} + \frac{Cx}{x_{t}}$. Define func x^2 a, to find \sqrt{a} is to find firms.

 f' , f'' are continuous and $f'(x)$ = 2 r = 2 \sqrt{a} = D . Newton's : $\chi_{t+1} = \chi_t - \frac{f^{(x+1)}}{f^{(x+1)}} = \chi_t - \frac{\chi_t^{2} - \alpha}{2 \chi_t} = \frac{1}{2} c \chi_t + \frac{\alpha}{\chi_t}$). To estimate m_i $m = \frac{1}{2f'cr} = \frac{1}{2r} = \frac{1}{2\sqrt{a}}$

Handle multiple roots:

Def. YEIR is a noot of multiplicity m of fux, if there is a polynomial suxs s.t. scr, $\#b$ and $f(x) = (x-r)^m$ scxs. m = 1 : 7 is a simple root m 32 : V is a multiple root \Leftarrow > $f(x)$ \subset v , $f^{(2)}(x)$ \subset v , \in v , \in v , \in \mathbb{R} , $f^{(m)}(x)$ \neq \mathbb{R} ,

Consider fun zx^m cm 52), f has multiple roots at x_0 $f'(c\gamma)$ = $m \cdot x^{m-1}$ = o . Above conalysis for simple root does not work for this case! $24u - \frac{1}{1}u + 2 = x + \frac{x^2}{m \cdot x^{m-1}} = \frac{m \cdot 1}{m \cdot 2}$ \Rightarrow $e_{\text{em}} = \frac{m-1}{m} \cdot e_{\text{th}}$ \Rightarrow $e_{\text{th}} = \left(\frac{m-1}{m}\right)^{n} \cdot e_{\text{th}}$. It is slow. $Q:$ In the multiple case, can we fix Newton's so that it converges fuster? If $f(x) = (x+y)^m$ sexi, then we have $|e_{t+1}| \lesssim \frac{m-1}{m} \cdot |e_{t}|$. To show this, $\gamma_{t+1} = \gamma_t - \frac{f(x_t)}{f'(x_t)}$ \Leftarrow $2e_t - \frac{f(x_t)}{f'(x_t)}$ $E t H = E_t Xt - V$ m sexe m $(x_{t} - Y)$ \cdot $(y_{t+1} + (x_{t} - Y)$ \cdot y' $(x_{t+1} - Y)$ $e_t - \frac{e_t \cdot s}{s_t}}$ m .suxe) + s' Urt). e $(m - 1)$. SLXt $s + S'$ LXt). e_t $m \cdot 5$ CH) + 5^{\prime} CH) e ϵ m-1 $\left($. $+$ Uke t uxf t 5_{th} m:504 $)$ + e_t : \mathcal{S} CE $_{\epsilon}$ e_t Fixing it: Just need to add $-\frac{(m-1)\cdot f(k+1)}{f(k+1)}$ on right side f Ute

 \Rightarrow $e_{t+1} = O(e_t^2)$. So, a fixed version is:

$$
\gamma_{t+1} = \gamma_t - \frac{m \cdot f(t)}{f'(t)}.
$$

Summary of Newton's

- . For simple not, it converges quadratically when x_0 is close enough to ^r
- For multiple nots, it converges linearly but can be fixed.

 $\frac{1}{2}\chi_{\mathbf{p}}$

 γ_{2}

when x_0 is far from r , it may diverge!

ii

 $f(x)$. One can use Bisect to find a good to and then apply Newton's

. One needs to have $f'(x)$ and $f'(x) \neq 0$!

 $Q: If f(x)$ is hard to obtain, can we find a good moched s.t. it is superlinear?

It leads to $e_{t+1} = \frac{f(t+1)}{f(t+1)} - f(t+1)$
 $0ef. h(t) = \begin{cases} \frac{f(t+1)}{f(t+1)} - f(t+1) \\ \frac{1}{f(t+1)} - f(t+1) \\ \frac{1}{f(t+1)} - f(t+1) \end{cases}$ $\therefore \frac{f(t+1)}{f(t+1)} - f(t+1) = \begin{cases} \frac{f(t+1)(-1)}{f(t+1)} - f(t+1) \\ \frac{1}{2}f(t+1) \end{cases}$ $\therefore \frac{f(t+1)}{f(t+1)} - \frac{f(t+1)}{f(t+$ h cxer - h cxer) = $\frac{N U m + 1}{f(k+1) - f(k+1)}$. $e_t e_{t-1}$ $\frac{h(\gamma_{t})-h(\gamma_{t-1})}{f(\gamma_{t})-f(\gamma_{t-1})}=\frac{h(\gamma_{t})-h(\gamma_{t-1})}{\gamma_{t}-\gamma_{t-1}}-\frac{\gamma_{t}-\gamma_{t-1}}{f(\gamma_{t})-f(\gamma_{t-1})}=\frac{h'(1)}{f'(3)}$ Mr, 3+ E LOON (tr, xe). We assume fix) E C LIR]. $f(x) = f(u) + f'(u) \cdot (x-u) + \frac{f'(x)}{2} (x-a)^2$ 3 E conv Cx, a). Here { x := r
l a := ft, b + E conv (r, f) =). => $f(w) = f(q_{t}) + f'(q_{t}) (r - q_{t}) + \frac{(r - q_{t})^{2}}{2} f'(q_{t})$
 $\frac{1}{2} f''(\delta_{t}) = \frac{f'(q_{t}) (q_{t+1}) - f(q_{t})^{2}}{(q_{t-1})^{2}} = h'(q_{t})$

=> $e_{t+1} = \frac{f''(\delta_{t})}{2 f'(s_{t})} \cdot e_{t} \cdot e_{t-1}$, $\frac{\delta_{t}}{\delta_{t}} e^{i\omega_{t}} (x_{t}, x_{t+1}, r)$
 $\frac{\delta_{t}}{\delta_{t}} e^{i\omega_{t}} (x_{$ Note $x_{t-1} = e_{t-1}$. If xs, x1, x2 are close enough to r and $\left|\frac{f''(5t)}{2f'(5t)}\right| \leq M$ is properly bounded. Suppose that

$$
e_{1} \leq \frac{1}{2n} \text{ (mod } |e_{0}| \leq \frac{1}{2n} \cdot \text{ then } |e_{1}| \leq M |e_{1}| \leq 1
$$
\n
$$
\leq \frac{1}{2} |e_{0}| \text{ (mod } \leq \frac{1}{2} |e_{1}| \Rightarrow)
$$
\n
$$
|e_{2}| \leq \frac{1}{2} \text{ (mod } 1 \text{ (mod } 2) \leq \frac{1}{2} \cdot \text{ (mod }
$$

Multiple roots:

 \blacksquare

One can reduce to the following error iteration:

$$
e_{t+1} = \frac{e_{t+1}e_t^m - e_t e_{t+1}^{m+1} + O(1|e_{t+1}|^{m+2})}{e_t^m - e_{t+1}^m + O(1|e_{t+1}|^{m+1})}
$$
 (m32)
\n
$$
\Leftrightarrow \int_{1. m=2, it \text{ is a Fibonacci sequence:} |e_{t+1}| \sim \lambda_1 e_{t+1} |\sim \lambda_1 e_{t+1} \text{ with}
$$

\n
$$
\lambda_1 e_{\lambda-1} \cdot (\lambda_1^m + \lambda_1^{m-1}) = 0, \lambda_2 e_{t+1} \text{ or } \lambda_3 e_{t+1} \text{ for } t \text{ in } \lambda_1 e_{t+1} \text{ with}
$$

(b) Stability of solving nontinear equation:

To design the strp conditions of above methods, une can consider two types of errors:

\n- Forward env CFE):
$$
|x-r|
$$
\n- Enckward error CBE): $|f(x_{t}) - f(x)| = |f(x_{t})|$
\n

To yet approximate xe, the forward error comes from the algorithm white the backword error comes from firself.

• Example 1: $f(x) = (x-\frac{2}{3})^3 = x^3 - 2x^2 + \frac{4}{3}x - \frac{8}{23}$ After Ibth iteration of Bisect: BE $x 2.0 \times 10^{-16}$ while FE $\approx 10^{-5}$. why? Note $|f(x_1)| = (x_1 - \frac{2}{3})^3 = e_+^3$.

Example 2:
$$
f(x)=\sin(x)-x
$$
. $\sec x=10^{-3}, r=0$
\n $GE: 1+(x+1) = 16\sin(1,0.001) - 1.001$
\n $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^3}{2!} + \frac{x^4}{9!} - ...$
\n $|f(x+1)| = 1 \sin(x+1) - x + 1 = 0(x^2) \approx 162 \times 10^{-18}$.
\n $FE = 1x + -1 = 10^{-3}$.

Sensitivity: Small floating point errors in the function f translate into large errors in the not! It is called a sensitive numerical problem.

To measure the sonsitivity, assume fuse. there is a small change is mude on fix : Egers where E is small value. We actually find:

 $f(x) + 2 \cdot g(x) = 0$. Def. Fug = $f(x) + 2 \cdot g(x)$ Let $r+\Delta r$ is the root of $F(x)$. That is $F(r + \Delta r) = f(r + \Delta r) + E g(r + \Delta r) = 0$, where or is the change of r due to small arror 6 . Use Taylur polynomial off: $\begin{cases} \text{for } x = f(x) + \Delta x \cdot f'(x) + \text{if } x = 0 \\ \text{for } f(x) = g(x) + \Delta x \cdot g'(x) + \text{if } x = 0 \end{cases}$

$$
30, 0=4u+6y+2.9u+6y
$$

\n
$$
2A + 4w + 6y \cdot 2.9'w + 2.9w + 0(18y^{2})
$$

\n
$$
2x \cdot 2 + w + 2.9'w
$$

\n
$$
2x \cdot 2 + w + 2.9'w
$$

\n
$$
2x \cdot 2 + w
$$

Example: Suy we nant to estimate polynomial $px = \frac{b}{11} Lk - i$, there are system errors s.t. the final estimate is $pwx + 2 \times 7$. Find sensitivity. Solution: Let $f(x) = \prod_{i=1}^{6} (x-i)$, $2 = -10^{-6}$ and gus: x^2 ΔY 2-4 $\frac{901}{541}$ = $\frac{121}{5!}$ $\frac{63}{5!}$ = $\frac{1332.8.2}{5!}$ $(Mots \{t\}) = \sum_{s} (x-b) \cdot h_{j} (x) + \frac{s}{15} (x-i)$, so $f^{l}(b) = s!$ $10^{-6}.\,6^{7}$ x 0.2799. The estimated root : $Y+BY = 6.0023328$. ⁶digits of fax will cause ³ digits change error of root Error magnificant Factor LEMF): I dea: when bad cases happen, quantity FE/BE be large.

So, a reasonable way to mensure this: $EMF = \frac{rel. FE}{rel. BE} = \frac{\Delta v/r}{\frac{2 \cdot g w}{\frac{2 \cdot g w}{\sqrt{g w}}}$, $\frac{\Delta r}{r} \approx \frac{\frac{2 \cdot g w}{r f(w)}}{r f(w)}$ Note: rel. BE : | fust2.gus-fus
?> relative to y. $=\left|\frac{q_w}{r_{\cdot}f(w)}\right|$ ENF is highly related to sometition mimber. \cdot Example: $W(x) = \prod_{i=1}^{m} (x - i)$. We the sensitivity formula to estimate the root change in x^{15} term of was on root $y = 16$. Then find ZME . W_{t} uk) = W (t) + t). g(t), g(t) = $-1,632,280,820.75$ $W^{\prime}(x=16) = 15! 4!$ $\Delta y \approx \left| \frac{2.900}{f'(x)} \right| \approx 6.433 \times 10^{13}$ % $(2m^{-22.12}x/0^{-16})$ $56 = 10.0136$. $\left|\frac{q w}{r \cdot f' w}\right| = \frac{16^{15} (692,380,830)}{15! 4! 16} \approx 38710^{12}$ $($ Way= CX-1b). y_1x_1 , $y_2x_1 = \prod_{i=1}^{n} Cx_i - i$ $W^{l_{xx}}$ = $9l^{xx}$ + $(Mb) \cdot 9'l^{x}$, = $Wl(b) = 9l^{x}b^{x}$).