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Solving nonlinear equations

Given f : R → R, we say that f has a root at x = r if f (r) = 0.

The goal of this lecture is to find such root r

f (r) = 0. (1)

To check the existence of r , we have the following theorem

Theorem 1.1 (Existence of a root)
Let f be continuous on [a, b], satisfying f (a)f (b) < 0. Then f has a root in
[a, b], that is, there exists a number r ∈ [a, b] and f (r) = 0.

Example: Consider f (x) := ex − sin x − 2, note
f (0) = −1 < 0, f (π) = eπ − 2 > 0.
By the above theorem, we know f has a root in [0, π].
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Useful Fact: Taylor’s Theorem
Let f be an n-times differentiable function in a neighborhood of a ∈ R.
Recall that the Taylor polynomial of order n of f at a is the polynomial

Pn(x) = f (a) + f ′(a)(x − a) + · · ·+ f (n)(a)

n!
(x − a)n.

Let f (x) = Pn(x) + Rn(x) where Rn(x) is the remainder. We have

Theorem 1.2 (Lagrange’s formula for the remainder)

If f has an f (n+1) in [a, x ] then there is some a ≤ ξ ≤ x such that

Rn(x) =
f (n+1)(ξ)

(n + 1)!
(x − a)n+1.

Useful in error analysis.
For example, let a = r , and x = xt , we have R2(xt) = O(e3

t ).
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Algorithm 1 Bisect(f , a, b, ϵ)

1: Output: a root of f
2: n = 0, an = a, bn = b
3: f (an)f (bn) < 0, an < bn
4: while (bn − an)/2 > ϵ do
5: cn = (an + bn)/2
6: if f (cn) = 0 then
7: return cn
8: end if
9: if f (an)f (cn) < 0 then

10: bn = cn
11: else
12: an = cn
13: end if
14: n = n + 1
15: end while
16: Return cn

Accuracy
After n iterations, cn = (an + bn)/2.
The error |r − cn| is bounded by

|r − cn| <
b − a

2n+1 .

Time complexity
O(n + 2), i.e. n + 2 function
evaluations.

Iteration complexity
⌈log2 ((b − a)10p)⌉, where p is
correct number of decimal places and
we want |r − cn| ≤ .5 × 10p.
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Fixed-Point Iteration
The read number r is a fixed point of the function g if g(r) = r . Given an
initial point x0, we do the following iterations

FPI : xi+1 = g(xi ) (2)

Theorem 1.3 (The convergences of FPI)
If g is continuous and xi converges to r , then r is a fixed point.

g(r) = g( lim
i→∞

xi ) = lim
i→∞

g(xi ) = lim
i→∞

xi+1 = r .

Fact: The problem of finding root r of f (x) = 0 can be turned into the
problem of finding fixed-point r of g(x).
Examples

g(x) := x + f (x)

g(x) := x + f (x)/f ′(x) if f ′(x) ̸= 0
g(x) := x − f (x)/f ′(x) if f ′(x) ̸= 0 (You will see this again!)
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Different forms of FPI
Consider f (x) = x3 + x − 1 = 0 and the following forms of g

g1(x) := 1 − x3, g2(x) :=
3
√

1 − x , g3(x) =
1 + 2x3

1 + 3x2

t xt = g1(xt−1) xt = g2(xt−1) xt = g3(xt−1)
0 0.50000000 0.50000000 0.50000000
1 0.87500000 0.79370053 0.71428571
2 0.33007813 0.59088011 0.68317972
3 0.96403747 0.74236393 0.68232842
4 0.10405419 0.63631020 0.68232780
5 0.99887338 0.71380081 0.68232780
6 0.00337606 0.65900615 0.68232780
7 0.99999996 0.69863261 0.68232780
8 0.00000012 0.67044850 -
9 1.00000000 0.69072912 -
10 0.00000000 0.67625892 -
11 1.00000000 0.68664554 -
12 0.00000000 0.67922234 -
13 - 0.68454401 -

All three iteration procedure
starts from x0 = 0.5. Some
observations:

xt+1 = g1(xt) cannot
converge properly.
xt+1 = g2(xt) converges
but relatively slow.
xt+1 = g3(xt) converges
very fast.

6 / 40



Bisection and FPI Newton’s, Secant, and Others Sensitivity

Error analysis of FPI

Theorem 1.4 (Linear convergence of FPI)
Assume that g is continuously differentiable, that g(r) = r , and that S =
|g ′(r)| < 1. Then Fixed-Point Iteration converges linearly with rate S to the
fixed point r for initial guesses sufficiently close to r .

Definition 1.5 (Linear Convergence)
Let et = |r − xt | denote the error at step t of an iterative method. If

lim
i→∞

et+1

et
= S < 1, (3)

the method is said to obey linear convergence with rate S . An iterative
method is called locally convergent to r if the method converges to r for
initial guesses sufficiently close to r .
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Iteration Complexity of FPI
Set tolerance to ϵ. We may have the following ways

|xt+1 − xt | < ϵ
|xt+1−xt |
|xt+1| < ϵ or |xt+1−xt |

max(|xt+1|,θ) < ϵ ( useful when the solution is near 0)

Time complexity
O(n) where n is the total number of iteration needed.

Iteration complexity

Theorem 1.6 (Iteration complexity)
Given the tolerance ϵ and assume that |g ′(x)| ≤ m, if we want to have
et := |xt − r | ≤ ϵ, then the number of iteration needed is

t ≥
⌈
ln

(
ϵ(1 −m)

|x1 − x0|

)/
lnm

⌉
.
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Example 1: Comparison with Bisect

f (x) = cos x − sin x

g(x) := x + cos x − sin x
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t
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0

lo
g(
e t

)
=

lo
g(
|x
t
−
r|)

f (x) = cos x− sin x, g(x) = x + cos x− sin x

Bisect(f, [a, b] = [0, 1])

FPI(g, x0 = 0.0)

FPI is faster than Bisect (expected as |g ′(r)| ≈ 0.414)
Bisect is “unsteady”
FPI is “steady”: error is monotonically decreasing!
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Example 2: Comparison with Bisect

f (x) = 1.8x − x2

g(x) := 2.8x − x2
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t
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lo
g(
e t

)
=

lo
g(
|x
t
−
r|)

f (x) = 1.8x− x2, g(x) = 2.8x− x2

Bisect(f, [a, b] = [1, 2])

FPI(g, x0 = 0.1)

FPI is slower than Bisect (expected as |g ′(r)| = 0.8)
FPI is “unsteady” at the beginning
FPI is “steady”: error is monotonically decreasing!
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FPI for x = cos x
Recall that we introduced an interesting case when we use the calculator:
push the cosine button when some initial value will always converge to a
fixed number. The iteration procedure is FPI!

xt+1 = cos xt

t xt et = |xt − r | et/et−1
0 1.0000000000000 2.609148667848393e-01 -
5 7.0136877362e-01 3.7716359592e-02 0.693376
10 7.4423735490e-01 5.1522216854e-03 0.670767
15 7.3836920412e-01 7.1592909284e-04 0.674004
20 7.3918439977e-01 9.9266556333e-05 0.673558
25 7.3907136530e-01 1.3767916216e-05 0.673620
30 7.3908704270e-01 1.9094801715e-06 0.673611
35 7.3908486839e-01 2.6482844651e-07 0.673612
40 7.3908516994e-01 3.6729393860e-08 0.673612
45 7.3908512812e-01 5.0940468510e-09 0.673612
50 7.3908513392e-01 7.0649985862e-10 0.673612
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FPI for x2 = a, i.e.,
√
a

Recall that we introduced a modern way to calculate
√
a with

xt+1 =
1
2

(
xt +

a

xt

)
.

This can be derived via FPI. We showcase a = 2.

t xt et = |xt − r | et/e2
t−1

0 5.0000000000000000000000000 3.585786437626905e+0 -
1 2.7000000000000000000000000 1.285786437626905e+0 0.10000000
2 1.7203703703703703703703704 3.061568079972753e-1 0.18518519
3 1.4414553681776502013315792 2.724180580455515e-2 0.29063509
4 1.4144709813677710024898977 2.574189946759537e-4 0.34687165
5 1.4142135857968837630466128 2.342378871424492e-8 0.35348905
6 1.4142135623730952427871953 1.939855065882499e-16 0.35355338
7 1.4142135623730950488016887 1.330434729502770e-32 0.35355339
8 1.4142135623730950488016887 6.258095016769949e-65 0.35355339
9 1.4142135623730950488016887 1.384647774597878e-129 0.35355339
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Newton’s method

Key Idea: Draw the tangent line at point xt and use the intersection point
of this line with the x-axis as an approximation root. One point on the
tangent line is (xt , f (xt)). The point-slope formula for the equation of a line
is y − f (xt) = f ′(xt)(x − xt). The intersection point can be found by letting
y = 0. That is,

y − f (xt) = f ′(xt)(x − xt)

x − xt = − f (xt)

f ′(xt)

x = xt −
f (xt)

f ′(xt)
.
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Quadratically Convergent of Newton’s

Definition 2.1 (Quadratically convergent)
Let et = |xt − r | denote the error after step t of an iterative method. The
iteration is quadratically convergent if

M = lim
t→∞

et+1

e2
t

< ∞. (4)

Theorem 2.2 (Quadratically convergent of the Newton’s)
Let f be twice continuously differentiable and f (r) = 0. If f ′(r) ̸= 0, then
Newton’s Method is locally and quadratically convergent to r . The error et
at step t satisfies

lim
t→∞

et+1

e2
t

= M, where M =
f ′′(r)

2f ′(r)
. (5)
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Newton’s method for x3 + x − 1 = 0

Algorithm 2 Newton(f , x0)

1: x0 = initial guesses
2: for t = 0, 1, 2, . . . , do
3: xt+1 = xt − f (xt)

f ′(xt)

4: end for
5: Return xt+1

Consider f (x) = x3 + x − 1 and use the New-
ton’s method to find a root of f (x) = 0. The
iteration table of the Newton’s method shows
as the following: (use Python decimal with
getcontext().prec = 200)

t xt et = |xt − x∗| et/e2
t−1

0 -0.7000000000000000000000000 1.382327803828019e+0 -
1 0.1271255060728744939271255 5.552022977551448e-1 0.29055555
2 0.9576781191756612589525201 2.753503153476419e-1 0.89327066
3 0.7348277949945015379097026 5.249999116648221e-2 0.69244945
4 0.6845917706849266679098768 2.263966856907341e-3 0.82139415
5 0.6823321742044841535484046 4.370376464826179e-6 0.85266556
6 0.6823278038443323513825625 1.631302401307875e-11 0.85407651
7 0.6823278038280193273697110 2.272830855039658e-22 0.85407924
8 0.6823278038280193273694837 4.411968456107219e-44 0.85407924
9 0.6823278038280193273694837 1.662505011372050e-87 0.85407924
10 0.6823278038280193273694837 2.360609180609911e-174 0.85407924 15 / 40
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Initial point x0 is important

Consider the following equation

f (x) = 4x4 − 6x2 − 11/4 = 0

The iteration procedure of Newton’s is

xt+1 = xt −
4x4

t − 6x2
t − 11/4

16x3
t − 12xt

.

Given x0 ∈ [−10, 10]
x0 ∈ [−.62,−.35] ∪ [.35, .62], it alternatively gives xt = −1

2 , xt+1 = 1
2 .

x0 ∈ {0}, Newton’s cannot apply.
It converges in other cases.
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Newton’s for multiplicative roots

Newton’s method does not always converge quadratically.
Consider f (x) = x2, when it applies Newton’s method, we have

xt+1 = xt −
f (xt)

f ′(xt)
= xt −

x2
t

2xt
=

xt
2
.

The above convergence is linear. It is similar for f (x) = xm, we have
xt+1 = xt − xmt

mxm−1
t

= m−1
m xt .

Example: f (x) = sin x + x2 cos x − x2 − x , and estimate the number of
steps of Newton’s method required to converge within six correct places.

Is it possible to fix this issue?
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Modified Newton’s for multiplicative roots
Key Idea: Try to shift more on f (xt)/f

′(xt), that is

xt+1 = xt −
f (xt)

f ′(xt)
−(m − 1) · f (xt)

f ′(xt)

Theorem 2.3
If f is (m + 1)-times continuously differentiable on [a, b], which contains a
root r of multiplicity m > 1, then Modified Newton’s Method

xt+1 = xt −
m · f (xt)
f ′(xt)

(6)

converges locally and quadratically to r .

Bad side: We need to know m explicitly.
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Secant method
The Newton’s method converges very fast. But, it needs to have derivative
information, which may not be available. Can we make any approximation
based on Newton’s method?

Key Idea: Approximate the derivative by constructing a secant line!

An approximation of f ′(xt) atxt : f ′(xt) ≈
f (xt)− f (xt−1)

xt − xt−1
. (7)

Algorithm 3 Secant(f , x0, x1)

1: x0, x1 be initial guesses
2: for t = 1, 2, . . . , do
3: xt+1 = xt − f (xt)(xt−xt−1)

f (xt)−f (xt−1)

4: end for
5: Return xt+1
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Convergence analysis of Secant

Theorem 2.4 (Convergence of Secant)
under the assumption that the Secant Method converges to r and f (r) = 0,
the approximate error relationship

et+1 ≈
∣∣∣∣∣ f

′′
(r)

2f ′

∣∣∣∣∣ etet−1, (8)

this implies that

et+1 ≈
∣∣∣∣∣ f

′′
(r)

2f ′

∣∣∣∣∣ eαt , (9)

where α = (1 +
√

5)/2 ≈ 1.62.

The convergence factor 1 < α < 2.
It is superlinear!
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Secant for x3 + x − 1 = 0
Consider f (x) = x3 + x − 1 and use the Secant method to find a root of
f (x) = 0. The iteration table of the Secant method shows as the following:
(et+1 = |xt+1 − x∗|, use Python decimal with getcontext().prec = 200)

t xt et et/eαt−1, α = 1+
√

5
2

0 0.0000000000000000000000000 6.823278038280193e-1 -
1 1.0000000000000000000000000 3.176721961719807e-1 0.58963610
2 0.5000000000000000000000000 1.823278038280193e-1 0.58963610
3 0.6363636363636363636363636 4.596416746438296e-2 1.16591657
4 0.6900523560209424083769634 7.724552192923081e-3 0.72174624
5 0.6820204196481855844365501 3.073841798337429e-4 1.12751983
6 0.6823257814098927983754469 2.022418126528994e-6 0.80384864
7 0.6823278043590257091268799 5.310063817573961e-10 0.97481374
8 0.6823278038280184101586490 9.172108347492460e-16 0.86774892
9 0.6823278038280193273694833 4.159748582088937e-25 0.93233725
10 0.6823278038280193273694837 3.258625294159891e-40 0.89187309
11 0.6823278038280193273694837 1.157709700479240e-64 0.91666904
12 0.6823278038280193273694837 3.222049900695358e-104 0.90126413
13 0.6823278038280193273694837 3.185885035992595e-168 0.91075405
14 0.6823278038280193273694837 0.000000000000000e-185 0.90487723
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Secant method with False Position

Hybird idea of Bisect and Secant
Different from Bisect, the midpoint is replaced by a Secant method-like
approximation. Given x0, x1 such that f (x0)f (x1) < 0, we can make the
next point be

x2 = x1 −
f (x1)(x1 − x0)

f (x1)− f (x0)
,

for next iteration, we x0 = x1 and x1 = x2.
Unlike Secant’s method, False Position can make sure the point is
within the range [x0, x1] (i.e., assume that f (x0) < f (x1)).
Bisection Method guarantees to cut the uncertainty by 1/2 on each
step, but False Position makes no such promise.
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Dekker’s Method

Dekker’s Idea
Try Secant first and switch to Bisection when needed.

Interval values a and b containing root
sign (f (a)) ̸= sign (f (b))
If |f (a)| < |f (b)| swap a and b

c previous value of b (initially a)
Midpoint m = a+b

2
Try to compute secant intercept s using b and c

If dividing by zero s = m

Update a, b, and c

Repeat until |b − a| < ϵ
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Dekker’s Method
Algorithm 4 Dekker(f , a, b, ϵ)

1: Assert f (a)f (b) < 0;
2: c = a;
3: while True do
4: if f (b)f (c) ≥ 0 then
5: c = a;
6: end if
7: if |f (c)| < |f (b)| then
8: a = b, b = c, c = a;
9: end if

10: m = (b + c)/2;
11: if |m − b| ≤ ϵ(|b|) then
12: Return b
13: end if
14: p = (b − a) ∗ f (b);
15: if p ≥ 0 then

16: q = f (a)− f (b);
17: else
18: q = f (b)− f (a);
19: p = −p;
20: end if
21: a = b;
22: if p ≤ ϵ(q) then
23: b = b + sign(c − b) ∗ ϵ(b); // Minimal step
24: else if p ≤ (m − b) ∗ q then
25: b = b + p/q; // Secant
26: else
27: b = m; // Bisection
28: end if
29: end while
30: Return xt+1

ϵ(x): x has data type single or double, returns the positive distance from
abs(x) to the next larger floating-point number of the same precision as x .
ϵ(1.0) = 2−52 ≈ 2.2204 × 10−16.
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Brent’s method

An algorithm with Guaranteed Convergence for Finding a Zero of a Function,
The Computer Journal 14.4, 1971, pp. 422-425. By R. P. Brent. (He also
has a great book, "Algorithms for Minimization Without Derivatives,
Prentice Hall, 1973.")

The most practical method! Matlab: fzero, scipy brenth,brentq. Idea:
Try interpolating with a parabola (inverse quadratic interpolation)
If that does not work, then use Secant Method
Otherwise, use Bisect

It is more complicated than previous method we introduced.

Code: https://github.com/scipy/scipy/blob/main/scipy/
optimize/Zeros/brentq.c
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Ridder’s
Ridders, C. "A new algorithm for computing a single root of a real
continuous function." IEEE Transactions on circuits and systems 26.11
(1979): 979-980.

Idea: Given two values of the independent variable, x0 and x2, which are on
two different sides of the root being sought, i.e., f (x0)f (x2) < 0, the
method begins by evaluating the function at the midpoint x1 = (x0 + x2)/2.
One then finds the unique exponential function eax such that function
h(x) = f (x)eax satisfies h(x1) = (h(x0) + h(x2))/2. Specifically, parameter
a is determined by

ea(x1−x0) =
f (x1)− sign[f (x0)]

√
f (x1)2 − f (x0)f (x2)

f (x2)
.

x3 = x1 + (x1 − x0)
sign [f (x0)] f (x1)√
f (x1)

2 − f (x0) f (x2)
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Ridder’s

The false position method is then applied to the points (x0, h(x0)) and
(x2, h(x2)), leading to a new value x3 between x0 and x2,

x3 = x1 + (x1 − x0)
sign[f (x0)]f (x1)√
f (x1)2 − f (x0)f (x2)

. (10)

Comments from scipy.optimize: Ridders’ method is faster than Bisect, but
not generally as fast as Brent’s method.
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Application of root finding method

Let f (x) : Rd → R be differentiable convex. We want to minimize f over Rd

min
x∈Rd

f (x)

Recall Steepest Descent
Step 0: Given x0, set t := 0
Step 1: dt := −∇f (xt). If ∥dt∥2 ≤ ϵ, then stop.
Step 2: Solve minλ h(λ) := f (xt + λdt) for the step-length λt ,
perhaps chosen by an exact or inexact line-search.
Step 3: Set xt+1 = xt + λtdt , t = t + 1; Go to Step 1
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Application of root finding method

Consider
h(λ) := f (xt + λdt),

where f is a convex function (i.e., h(λ) is convex). Since h(λ) is convex
differentiable, the optimal λ∗ can be found when h′(λ) = 0, that is

h′(λ) = ∇f (xt + λdt)
⊤dt = 0.

That is, we need to find a root. We can apply any root-finding algorithm to
resolve the step size problem of steepest descent method.
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How to find effective range [a, b]?

Matlab fzero:
https://www.mathworks.com/help/matlab/ref/fzero.html

How do you find a suitable range of [a, b]?

Matlab’s Idea
Start at a single given x . Take an interval centered at x with half-width
x/50. Evaluate f (x) at the interval endpoints. If the signs match, increase
the interval width by a factor

√
2 and repeat until a sign change is detected.
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Find [a, b] use Change Detection

Algorithm 5 Signchange(f , x)

1: a = x , b = x
2: if x! = 0 then
3: dx = x/50
4: else
5: dx = 1/50
6: end if
7: while sign(f (a)) == sign(f (b)) do
8: dx =

√
2dx

9: a = x − dx
10: b = x + dx
11: end while
12: Return a, b

Try this algorithm multiple times until you find one range.
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How to check signs effectively?

To check f (x0)f (x1) < 0, there are two ways:

if f (x0)f (x1) < 0
if sign(f (x0))! = sign(f (x1)))

Consider: f (x) = np.exp(x)− 1.9151695967140057e−174 where we know
that f (−400) = 0. Given a = −450.0, b = −350.0, if we use
f (x0)f (x1) < 0, the algorithm will return 0.

scipy.optimize.brentq has this issue before v1.7.2(11/06/2021). Check more
details at: https://github.com/scipy/scipy/pull/14007 and
https://github.com/scipy/scipy/issues/13737.
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Open Source Codes

Python Implementations: C code for scipy.optimize
scipy.optimize.brenth: Find a root of a function in a bracketing interval
using Brent’s method with hyperbolic extrapolation. This algorithm is
proposed by Dekker in 1975.
scipy.optimize.bisect: Find root of a function within an interval using
bisection.
scipy.optimize.ridder: Find a root of a function in an interval using
Ridder’s method.
scipy.optimize.brentq: Find a root of a function in a bracketing interval
using Brent’s method with inverse quadratic interpolation.

To read the code, go to https:
//github.com/scipy/scipy/tree/main/scipy/optimize/Zeros.
There are four methods, including bisect.c, brenth.c, brentq.c, ridder.c.
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Limits of Accuracy

Consider f (x) = x3 − 2x2 + 4/3x − 8/27 with f (r = 2/3) = 0. Consider
using Bisect to solve f (x) = 0.

t xt et et/et−1
0 0.50000000000000000000 1.666666666666667e-1 -
2 0.50000000000000000000 1.666666666666667e-1 2.00000000
3 0.75000000000000000000 8.333333333333330e-2 0.25000000
7 0.67187500000000000000 5.208333333333300e-3 0.25000000
8 0.66406250000000000000 2.604166666666700e-3 1.00000000
9 0.66796875000000000000 1.302083333333300e-3 0.25000000
25 0.66667300462722800000 6.337960561300000e-6 1.00000000
53 0.66667306043228800000 6.393765621300000e-6 1.00000000
54 0.66667306043228800000 6.393765621300000e-6 1.00000000
55 0.66667306043228800000 6.393765621300000e-6 1.00000000

We cannot have six or more digits of precision! It indicates that Bisect loses
some or all significant digits.
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Limits of Accuracy
Two quantities we need to consider for checking stop condition

|f (xt)− 0| = |f (xt)|: How fast does f value go to zero?
|xt − r |: How fast we can get solution r?

(a) f (x); (b) Zoom in of f (x)

All other methods have the same issue!
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Limits of Accuracy

Definition 3.1 (Backward error, Forward error)
Assume r is a root of f , i.e., f (r) = 0. Suppose xt is an approximation to r .
For the root-finding problem, we define two types of errors

Forward error: |r − xt |
Backward error: |f (xt)− f (r)| = |f (xt)|

Problem: Equation f (x) → Equation solver → Solution
Forward error comes from algorithm
Backward error comes from f itself
Example in previous slide: |f (xt)| ≈ 2.2 × 10−16 while the forward error
is ≈ 10−5. In this case, backward error ≪ forward error!
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Limits of Accuracy
Consider the multiple roots finding

f (x) = x3 − 2x2 +
4
3
x − 8

27

=

(
x − 2

3

)3

= 0.

r = 2
3 is a multiple root with multiplicity m = 3

Use Taylor’s Theorem at point r

f (b) = f (a) + (b − a)f ′(a) +
(b − a)2

2!
f

′′
(a) + · · ·

+
(b − a)n

n!
f (n)(a) +

(b − a)n+1

(n + 1)!
f (n+1)(ξ)

Backward Error decreases quickly when forward error decreases!
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Sensitivity Formula for Roots
Assume that the problem is to find a root r of (x) = 0, but that a small
change g(x) is made to the input, where it is small. Let ∆r be the
corresponding change in the root, so that

f (r +∆r) + ϵg(r +∆r) = 0. (11)

Expanding f and g in degree-one Taylor polynomial implies that

f (r) + (∆r)f ′(r) + ϵg(r) + ϵ(∆r)g ′(r) +O((∆r)2) = 0, (12)

where "big O" notation O((∆r)2) to stand for terms involving (∆r)2 and
higher powers of ∆r . It can be neglected if ∆r is small.

(∆r)(f ′(r) + ϵg ′(r)) ≈ −f (r)− ϵg(r) = −ϵg(r) (13)

or
(∆r) ≈ −ϵg(r)

f ′(r) + ϵg ′(r)
≈ −ϵ

g(r)

f ′(r)
, (14)

assuming that ϵ is small compared with f ′(r).
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Sensitivity Formula for Roots
Assume that r is a root of f (x) and r +∆r is a root of f (x) + ϵg(x). Then

∆r ≈ −ϵg(r)

f ′(r)
if ϵ ≪ f ′(r). (15)

Example: estimate the largest root of
P(x) = (x − 1)(x − 2)(x − 3)(x − 4)(x − 5)(x − 6)− 10−6x7. Set
f (x) = (x − 1)(x − 2)(x − 3)(x − 4)(x − 5)(x − 6), ϵ = −10−6 and
g(x) = x7. Without the ϵg(x) term, the largest root is r = 6.

∆r ≈ −ϵ67

5!
= −2332.8ϵ, (16)

the error magnification factor is the relative forward error divided by the
relative backward error.∣∣∣∣ ∆r/r

ϵg(r)/g(r)

∣∣∣∣ = −ϵg(r)/(rf ′(r))

ϵ
=

|g(r)|
|rf ′(r)| (17)
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Summary
Bisect method:

Guarantee to converge
Relative slow even when candidate solution is near the root

Fixed-Point-Iteration (FPI):
Very general and easy to implement
It may converge and diverge
Sometime converge faster than Bisect

Newton’s and its variants:
Much faster (quadratically convergent)
Need to have derivative information of f (fixed by Secant method)
Slowed down when r is a multiple roots

Sensitivity analysis:
Limits of Accuracy
EMF
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