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Solving Systems of Linear Equations

This lecture aims at solving the following systems of linear equations

aiix1 + aipxe + a13x3 + - -+ + aipxp = by
az1X1 + axnxp + axsxz + - -+ apxy, = bo
as1x1 + aspxp + azzxz + -+ aspxy, = b

an1X1 + an2xo + ap3x3 + - -+ + appXp = bp

It is written as
Ax = b, (1)

where A € R™" x ¢ R", and b € R".
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Matrix Algebra

Given A= [a;, ap,...,a,] € R™"

@ a; € R" a column vector.

@ Transpose of A is denoted by AT with each entry (AT)U = aji.

© We say A is symmetric if AT = A.

Q Wessay I = Ais an identity matrix (A); = 1if i = j; 0 otherwise.

@ We say A is positive definite if xT Ax > 0,Vx € R"\{0}.

@ We say A is diagonally dominant matrix, if
|aiil > > 7 lagl i =1,2,...,n.

@ We say A is an eigenvalue of A if Ax = Ax given x # 0 and we call x
is an eigenvector.
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Triangle matrix

A matrix of the form

l11 0
b1 lao
L= 031 {32
| Enﬂ £m2 e gmn—l Emn |
is called a lower triangular matrix.
U1 U2 U3 ... Ulp
Upp U3 ... Uogp
U= :
Un—1,n
0 Un,n

is called an upper triangular matrix.
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Properties of triangle matrix

We say L is unit lower triangular if £; =1for i =1,2,...,n.

@ The transpose of an upper triangular matrix is a lower triangular matrix
and vice versa.
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Properties of triangle matrix

We say L is unit lower triangular if £; =1for i =1,2,...,n.

@ The transpose of an upper triangular matrix is a lower triangular matrix
and vice versa.

@ A matrix which is both symmetric and triangular is diagonal.
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Properties of triangle matrix

We say L is unit lower triangular if £; =1for i =1,2,...,n.
@ The transpose of an upper triangular matrix is a lower triangular matrix
and vice versa.

@ A matrix which is both symmetric and triangular is diagonal.

-1

e If U is upper triangular and invertible, then U~ is upper triangular.
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Properties of triangle matrix

We say L is unit lower triangular if £; =1for i =1,2,...,n.

@ The transpose of an upper triangular matrix is a lower triangular matrix
and vice versa.

@ A matrix which is both symmetric and triangular is diagonal.

-1

e If U is upper triangular and invertible, then U~ is upper triangular.

@ The inverse of a unit lower triangular matrix is a unit lower triangular.
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Properties of triangle matrix

We say L is unit lower triangular if £; =1for i =1,2,...,n.

@ The transpose of an upper triangular matrix is a lower triangular matrix
and vice versa.

@ A matrix which is both symmetric and triangular is diagonal.

~1is upper triangular.

o If U is upper triangular and invertible, then U
@ The inverse of a unit lower triangular matrix is a unit lower triangular.

@ The product of two upper (lower) triangular matrices is upper (lower)
triangular.

5/40



Numerical Linear Algebra Direct Solvers Iteration methods

[e]e] lele]elee]ele]e]e]

Properties of triangle matrix

We say L is unit lower triangular if £; =1for i =1,2,...,n.

@ The transpose of an upper triangular matrix is a lower triangular matrix
and vice versa.

@ A matrix which is both symmetric and triangular is diagonal.

~1is upper triangular.

o If U is upper triangular and invertible, then U
@ The inverse of a unit lower triangular matrix is a unit lower triangular.

@ The product of two upper (lower) triangular matrices is upper (lower)
triangular.
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Forward Substitution

The matrix equation Lx = b can be written as a system of linear equations

l11x1 =b
U 1x1 + £o 20 = by
en,lxl + gn,2X2 +- gn,an = by
The solution can be written as
by
X = —
1 61,1’
o = by — {2 1x1
2V
n—1
b, — Zi:l En,ixi
Xp = .

En,n
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Inverse of matrix

Idea: The n columns of a nonsingular n x n matrix A form a basis for the

whole space R". Therefore, we can uniquely express any vector as a linear

combination of them. In particular, the canonical unit vector with 1 in the j
th entry and zeros elsewhere, written e;, can be expanded:

n
€ = E Zjjdj, j:1,2,...,n
i=1

Let Z be the matrix with entries z;;, and let z; denote the j th column of Z.
Then the above can be written e; = Az;. It can be written concisely as

e1|---|e | =1=AZ, (2)

where I is the n x n matrix known as the identity. The matrix Z is the

inverse of A. Any square nonsingular matrix A has a unique inverse, written
A1l that satisfies AA"! = A"1A= 1.
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Inverse of matrix

Theorem 1.1 (Equivalent properties of inverse matrix)

For A € R"*", the following conditions are equivalent:
A has an inverse A~!

rank(A) = n

range (A) = R"

null(A) = {0}

0 is not an eigenvalue of A

0 is not a singular value of A

det(A) # 0

The equation Ax = 0 implies x =0

000000 O0OO0CO

For each b € R", there is exactly one x € R" such that Ax = b
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Norms in vector space

To measure vectors, we assign vectors nonnegative numbers.
When p > 1, we define p-norm of vector x €

R" as - ]
n 1/p i / \3\\
Ixllp £ (Z |x,-|P> @) \\\ !
i=1
Some useful properties: | |
o lxll2 < lxlly < VAllxll INEZZ}

® [Ix[loo < lIxll2 < v/l X[l
o [[xlloo < llx[lr < nllx]loo

1

The values of coordinates
@ Cauchy-Schwarz inequality: (x1,x2), for which the p-norm

[(x, ¥ < Ix]l2 - llyll2 | x||, takes the value 1, i.e.
o Triangle Inequality [l =1
Ix +yllp < lIxllp +llyllp
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Matrix Norm

Definition 1.2 (Matrix Norm)

Consider a vector space of matrices with m rows and n columns. A matrix
norm is a function ||-|| : K™*" — R that must satisfy the following properties:
For all scalars o € K and matrices A, B € K™*",

o Nonnegativity: ||A|| > 0, unique zero: ||A|| =0 < A = Omxn
o Absolutely homogeneous: ||aA|| = |af - || A||
o Triangle inequality: ||A+ B| < ||A| + ||B]|

1/2
e Forbenius norm: ||A|F := (Z;’J:l |a,-j|2)

Ax|l»
[l

@ Operator norm: ||A||, = sup,o , where 1 < p < 00
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Matrix properties

Inverse of Simple Matrix
Given an invertible matrix A € R2*2, we have

_la b 41 d —b| 1 d —b
A_[C d}’A _detA[c a]_adbc[c a]'
Matrix Condition number
LAl e\ JATe ] { L] }
eb70 | e [A~1b] e£0 | el b0 | |A~1b]|

= max M max{HAxH}
e#0 | |e] x#0 | [|x]|

= [[a”*] - 14l
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Eigenvalues of symmetric matrices

Definition 1.3 (Symmetric matrix)

Given any A € R™" if AT = A, then we call A is a symmetric matrix.

Definition 1.4 (Orthonormal)

A set of vectors S is orthonormal if the elements of the set are unit vectors

that are pairwise orthogonal. Let S = {u, v}, then |ju]| = 1,||v|| =1 and

T, _
u'v=0. )

Theorem 1.5 (Real eigenvalues of A)

Assume that A € R"*" js symmetric with real entries. Then the eigenvalues
are real numbers, and the set of unit eigenvectors of A is an orthonormal set
S ={wi,...,wy} that forms a basis of R".

’
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Symmetric positive-definite matrices

Definition 1.6 (Symmetric Positive-Definite (SPD))

The matrix A € R™" if AT = A. The matrix A is positive-definite if
x T Ax > 0 for all vectors x # 0.

Example:
@ Show that A = B E] is SPD: A is symmetric as A" = A and applies

definition
2 2| |x
T 1
x Ax = [Xl X2] |:2 5:| |:X2:|
= 2x7 + Ax1x0 + 5x5 = 2(x1 + x2)? + 3x3.

o A= [i ﬂ is not SPD. One can show that

xTAx = 2(x1 + 2x0)? — 3x2 with x; = —2 and xp = 1.
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SPD matrices

If A € R™ js a symmetric matrix, then A is positive-definite if and only if
all of its eigenvalues are positive.
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SPD matrices

If A € R™ js a symmetric matrix, then A is positive-definite if and only if
all of its eigenvalues are positive.

.

Notice that if A is positive-definite and Av = \v for a nonzero vector v,
then 0 < v' Av = v (\v) = A||v||3. Hence, A > 0.

On the other hand, if all eigenvalues of A are positive, then write any nonzero
X = ci1v1 + ...+ c,v, where each v; are orthonormal unit vectors and not
all ¢; are zero. Then, we have

xTAx = (cavi+ -+ c,,v,,)T(c1/\1v1 + -+ CpAnVn)

= Atfler]l5 + -+ 4 Anllall3 > O.
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Gaussian Elimination

The Naive Gaussian Elimination
o Add or subtract a multiple of one equation from another

@ Multiply an equation by a nonzero constant

a11 4d12 ... diln ‘ b1
a1 ax ... an | b

Subtract Z—ﬁ times row 1 from row 2, we have

|:311 aio ce din ’ b1 :|
_ d21 _ d21 _ 221
0 axn—2an ... an—2ay, | bh—32bh

Repeat the above procedure until we find U
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Gaussian Elimination: LU Factorization

The idea of transforming A into an upper triangular U by introducing zeros
below the diagonal by subtracting multiples of each row from subsequent

rows. This process is equivalent to multiplying A by a sequence of lower
triangular Ly on the left:

L1 ---LL; A=U.
L1

Setting L= L;*L;"--- L1 gives A= LU. Thus we obtain

A=LU.

@ U is upper triangular

o L is unit lower triangular (diagonals are all ones)
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LU Factorization: An example

2110

. 4 3 31

Let us consider A = 8 7 9 5

6 7 9 8

First step of Gaussian elimination
1 2 1 10 2 1 10
-2 1 4 3 3 1 1 11
ha=1_4 8 79 5| 355
-3 1 6 7 9 8 4 6 8

The second step

1 2 1 10 2 110
1 1 11 1 11
LhLA= -3 1 3 55| 2 2
—4 1 4 6 8 2 4
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LU Factorization: An example (continued)

LA =

N = =

1
-1 1

NN ==
A~ DN~ O
NN~ O

Compute the product L = L1_1L2_1 N

n—1-
° L,-_1 is just L; itself, but with each entry below the diagonal negated
o LMLyt L1 s just the unit lower-triangular matrix with the

nonzero subdiagonal entries of L,-_1 inserted in the appropriate places.
—1

1 1 2 1 1 0 1 2 1 1 0

-2 1 21 4 3 3 1| |2 1 11 1

—4 1 |4 1 ’ 8 7 9 5| |4 3 1 2 2

-3 1 3 1 6 7 9 8 3 4 1 1 2
11 A L [

18 /40



ear Algebra Direct Solvers

0O000@0000000000

Naive Gaussian Elimination

Algorithm 1 Naive Gaussian Elimination
L U=AL=1
2. fork=1ton—1do
3: for j=k+1tondo
4 Ciie = ujic/ Uk
5: Ui jon = Uj j.n — Likcl
6: end for
7: end for

o Memory usage
To minimize memory use on the computer, both L and U can be
written into the same array as A.

o Time complexity

n=1 n
Z Z (n—k+1)~ §n3 flops.

k=1 j=k+1 19 /40
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Instability of Naive Guassian Elmination

11

o A has full rank with x(A) = (3 4+ v/5)/2 ~ 2.618 in the £» — norm.

@ We cannot do Gaussian Elimination without swapping.
10720 1 ]

Consider A = [ 0 1 }

1 1

@ 10?0 times the first row is subtracted from the second row:

1 0 10~ 1
L[1020 1]’ U[ 0 1-10%

Consider A = [

@ Suppose €mach ~ 10710, The number 1 — 10%° will not be represented
exactly; it will be rounded to the nearest floating point number.
Suppose that this is exactly —102%°.
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Instability of Naive Guassian Elmination

1 0 ~ 10-20 1 -~ 10720 1
_[1020 1]’ U‘[ 0 —1020]:“’_[ 1 o]

@ The above example gives A # LU.

™~

@ The error could be large when we solve Ax = b. For example, with
b=1[1,0]" we get X = [0,1]", whereas the correct solution is
x~[-1,1]".

To summarize, we know

@ For certain matrices, Naive Gaussian Elimination fails entirely because it
attempts division by zero.

@ Gaussian elimination, as presented so far, is unstable for solving general
linear systems (from backward substitution)

@ It is also unstable at forward substitution (image that xyx is too small)
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Pivoting

Pivot At step k of Gaussian elimination, multiples of row k are subtracted
from rows k + 1,..., n of the working matrix X in order to introduce zeros
in entry k of these rows. In this operation, row k, column k, and especially
the entry xu, play special roles. We call x,, the pivot. From every entry in
the submatrix Xy 1.n k:n is subtracted the product of a number in row k and
a number in column k, divided by xyx

X X X X X X X X X X
Xk X X X Xk X X X
X X X X | = 0 X X X
X X X X 0 X X X
X X X X 0 X X X

@ Why the kth row and column must be chosen?
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Pivoting

Pivot At step k of Gaussian elimination, multiples of row k are subtracted
from rows k + 1,..., n of the working matrix X in order to introduce zeros
in entry k of these rows. In this operation, row k, column k, and especially
the entry xu, play special roles. We call x,, the pivot. From every entry in
the submatrix Xy 1.n k:n is subtracted the product of a number in row k and
a number in column k, divided by xyx

X X X X X X X X X X
Xk X X X Xk X X X
X X X X | = 0 X X X
X X X X 0 X X X
X X X X 0 X X X

@ Why the kth row and column must be chosen?
@ We are free to choose any entry of Xi., . as the pivot, as long as it is

nonzero.
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Pivoting Strategies

o Complete pivoting If every entry of Xj.p k.n is considered as a possible
pivot at step k, there are O ((n — k)?) entries to be examined to
determine the largest. Summing over n steps, the total cost of selecting
pivots becomes O (n3) operations, adding significantly to the cost of
Gaussian elimination.
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Pivoting Strategies

o Complete pivoting If every entry of Xj.p k.n is considered as a possible
pivot at step k, there are O ((n — k)?) entries to be examined to
determine the largest. Summing over n steps, the total cost of selecting
pivots becomes O (n3) operations, adding significantly to the cost of
Gaussian elimination.

e Partial pivoting Only rows are interchanged. The pivot at each step is
chosen as the largest of the n — k + 1 sub diagonal entries in column k,
incurring a total cost of only O(n — k) operations for selecting the
pivot at each step, O (n?) operations overall.

X X X X X X X X X X X X X X X
X X X X Py Xie X X X Ly Xk X X X
X X X X — X X X X — 0 X X X
Xik X X X X X X X 0 X X X
X X X X X X X X 0 X X X

After n — 1 steps, A becomes an upper-triangular matrix U:
L, 1Pp_1---LoPLiPIA=U
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Partial pivoting: Example

2110
. 4 3 3 1
Consider A = 8709 5
6 7 9 8
Interchange the first and third rows (left-multiplication by P; ):
1 2 110 8 7 9 5
1 4331| [4331
1 8 7 95| 2110
1 6 7 9 8 6 7 9 8
The elimination step now looks like this (left-multiplication by L;)
1 8 7 9 5 8 7 9 5
~1/2 1 4331/ —1/2 —3/2 —3/2
~1/4 1 2110/ —3/4 —5/4 —5/4
—3/4 1|6 7 9 8 7/4  9/4 17/4
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Partial pivoting: Example (Continued)

The second and fourth rows are interchanged (multiplication by P»)

1 8 7 9 5 8 7 9 5
1 ~1/2 —3/2 -3/2 | _ 7/4  9/4 17/4

1 —3/4 —5/4 —5/4 | ~ —3/4 —5/4 —5/4

1 7/4  9/4 17/4 ~1/2 —3/2 -3/2

Second elimination step (multiplication by L)

1 8 7 9 5 8 7 9 5
1 19w 19w
E I B e A
Z 4 4 4 % 5
2 1 3 _3 6 2
7 2 2 2 7 7
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Partial pivoting: Example (Continued)

After P3
1 8 7 9 5 8 7 9 5
1 7 9 17 7 9 17
z i 4 | _ Z & 4
1 2 % _6 _2
1 & s 5
7 7 7 7

After L3

1 8 7 9 5 8 7 9 5
1 79 1 79 1

1 4
-3 1 -7 7 3
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Partial pivoting: Example (Continued)

The final matrix PA = LU

1 2 110 1 8 7 9 5

1 4 3 3 1 31 709
=1 2 = g%

1 8 795 %51 T 73
1 6 7 9 8 : 32 11 £

@ All the subdiagonal entries of L are < 1 in magnitude, a consequence of
the property x| = max; |xj| by this partial pivoting.

("] L3P3L2P2L1P1A =U

@ It is equivalent to PA = LU, why ?
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Gaussian Elimination with Partial Pivoting

Algorithm 2 Gaussian Elimination with Partial Pivot-
ing
L U=AL=1P=1
2. fork=1ton—1do
3: Select i > k to maximize |uj|
Interchange two rows wuy k:.n <> Uj k:n
Crk—1 < litk—1
Pk,: < Pi:
for j=k+1,k+2,...,ndo
Uik = uji/ Uk
Ujk:n = Uj k:n — LjkUk k:n
10: end for
11: end for

e e Na R

@ Memory usage One array as A.
e Time complexity Zz;i D ippr(n—k+1) ~ %n3 flops.
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Cholesky Factorization

Theorem 2.1 (Cholesky Theorem on LLT-Factorization)

If A is a real, symmetric, and positive definite matrix, then it has
a unique factorization, A = LLT, in which L is lower triangular
with a positive diagonal.

o The complexity of computing L is ~ n®/3 flops
o L is called the Cholesky factor of A
@ It can be interpreted as the “square root” of a p.d. matrix

@ It gives a practical method for testing positive definiteness
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Intuition of iteration methods

Ax = b,

where A€ R"™" x € R", b € R". Suppose x° be the initial guess of x*.
We can measure the estimation error:

0L A lh— X0,
then the solution can be expressed as
x* = x%+ e’

0

e” is unknown (hard as the original). Fortunately, we know the residual:

2 p— AxO.

Notice that Ax* = Ax% + Ae® < b = Ax? + Ae®. Hence r® = Ae.
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Intuition of iteration methods

Intuition: We already know that r® = Ae®. If there is an M such that

M-1Ae’ ~ €%, i.e., M~1A ~ I, then we can use M~1r0 to approximate
0
e”’. Let

M2 =1 = 20 =M1~ e (4)

M~ must be cheap!

We hope x! = x% + 20 is getting closer to x*. To summarize:
@ Step 1: Compute residual: r® = b — Ax°
@ Step 2: Solve Mz% = r® and use M~1r° to approximate e°
© Step 3: Get a better solution: x! = x% 4 2°

Repeat the above steps until the stop condition is satisfied.

31/40



ear Algebra Direct So Iteration methods

00@00000000

A general idea of iteration methods

We summarize the idea and write it as a linear iteration:

Algorithm 3 Iteration(x?, A, b, M)

1: x° A, b, M be initial guesses

2: fort=0,1,..., do

3 Com. Residual rt = b — Axt

4: Com. Approximate estimation error zt = M~1rt
5 Update x't! = xt + z¢

6: end for

7: Return xtt!

@ Q1: How do we design M 7
@ Q2: When will this method converge under what condition?
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Jacobi Method

Every i-th equation of Ax = b is

n
E aU)<J = b,'.
Jj=1

To solve the problem, for each x; at t-th iteration, assume other entries of x
remain fixed. This gives
o st
ot _ b 2
! aji '
Notice diagonal elements of A appears in denominator and Z#i ajj can be

decomposed into two parts Zj<,- aj + EJ->,- ajj. Denote

A=L+D+U.
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Jacobi Method
o In the matrix form, the Jacobi method is:

Xo = initial vector
xey1 =D (b—(L+ U)x) for t =0,1,2,...

@ In the form of Fixed-Point Iteration:
xe+1 = g(xt), where g(x¢) = D_l(b —(L+ U)x;)
To show that Jacobi is FPI, we have

Ax =b
(D+L+U)x=b
Dx =b—(L+ U)x.
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Jacobi Method

Jacobi method:

Xxg = initial vector
xtp1=D"Yb—(L+ U)x;) for t =0,1,2, ...

Recall we have an iterative method

Algorithm 4 Iteration(x°, A, b, M)

. 0 HE . . .

+ x be initial guesses Quiz: Find a suitable M

: for tt: 0’17""td° and then show that Jacobi
r'=b— Ax method is equivalent to lter-

1

2

3

. t_ pp-1pt _ .

v Zt+_1 M tr R ation method. (5 minutes)
5 X =X +2z

6

7

. end for

. Return xt*1
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Jacobi - An example

An example of the Jacobi method:

[3X0 ta= 5} with an initial guess [io} = [O} .
1

Xo+2x1 =5 0
o1t
x% _ O]
X7 | 10
17 [5=x%] 5 .
X(i — |3, = g} Observation:  The most re-
X1 5;X1 13 cently updated values of the
. 5 xt ] - unknowns are not used at each
) I e ¢ ste
P =< P
1 ] L3
_ - 5— 2 _
1 e P
3| 5-x2| |2
1 ] L 12
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Gauss-Seidel
Gauss-Seidel: the most recently updated values of the unknowns are used at
each step. Example:

3 1 -1 4
2 4 1 |v|=|1
-1 2 5 w 1
The iteration goes to 4 v, +w
U1 = ““Ti“‘f
1-— 2Ut+1 — Wt
Vig1 = ———— ———
t+1 4
14 upy1 —2v,
W1 = o Hl‘
5
b._ 3 ,a--X.t+1— . .a--x-t
Xit+l _ ! Zj<l y jaii ZJ>’ ) , for | = 1’27 Lo, n. (5)
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Gauss-Seidel

An alternative way: The most recently updated values of the unknowns are
used at each step, even if the updating occurs in the current step.
Gauss-Seidel Method:

x% = an initial vector

xttl = p-! (b — Ux' — th+1) for k=0,1,2,....

Algorithm 5 Iteration(x°, A, b, M)

. 0 R . . .

© x* be initial guesses Quiz: Find a suitable M and

: for tt: 0, 1""’td° then show that Gauss-Seidel
r'=b—Ax method is equivalent to lter-

1

2

3

) t -1t . .

4 zt+_1 m t’ . ation method. (5 minutes)
5 xttl = xt + 2

6

7

. end for

. Return xtt1
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Comparison between Jacobi and Gauss-Seidel
An example:

2Xp — X1 =1 12 -1 |11
~1xp + 2% —1]’WhereA_[—1 2]’1’_[1}

We use Jacobi and Gauss-Seidel with xo = [0,0]".

—— Jacobi

—=—  Gauss-Seidel

Gauss-Seidel converges faster
than Jacobi in this example.

logy [|x: — x*[|2
s

|
£

l‘] é ‘l (‘i é l‘() 1‘2 l‘l l‘(i 1‘8 2‘(!
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Successive Over-Relaxation

Can we do better?

Idea of Successive Over-Relaxation: define each component of the new guess
xt*1 as a weighted average of w times the Gauss-Seidel formula and 1 — w
times the current guess x*.

SOR method:
D = (1 - w) + aﬁ b= apg = apg | (6)
" j<i J>i
where 7=1,2,...,n.

@ SOR method is equivalent to Iteration method when M = g — L.
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