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Solving Systems of Linear Equations

This lecture aims at solving the following systems of linear equations

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

an1x1 + an2x2 + an3x3 + · · ·+ annxn = bn

It is written as
Ax = b, (1)

where A ∈ Rn×n, x ∈ Rn, and b ∈ Rn.
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Matrix Algebra

Given A = [a1, a2, . . . , an] ∈ Rn×n

1 ai ∈ Rn a column vector .
2 Transpose of A is denoted by A⊤ with each entry

(
A⊤)

ij
= aji .

3 We say A is symmetric if A⊤ = A.
4 We say I = A is an identity matrix (A)ij = 1 if i = j ; 0 otherwise.
5 We say A is positive definite if x⊤Ax > 0, ∀x ∈ Rn\{0}.
6 We say A is diagonally dominant matrix, if

|aii | >
∑n

j ̸=i |aij | , i = 1, 2, . . . , n.
7 We say λ is an eigenvalue of A if Ax = λx given x ̸= 0 and we call x

is an eigenvector.
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Triangle matrix
A matrix of the form

L =


ℓ1,1 0
ℓ2,1 ℓ2,2

ℓ3,1 ℓ3,2
. . .

...
...

. . . . . .
ℓn,1 ℓn,2 . . . ℓn,n−1 ℓn,n


is called a lower triangular matrix.

U =


u1,1 u1,2 u1,3 . . . u1,n

u2,2 u2,3 . . . u2,n
. . . . . .

...
. . . un−1,n

0 un,n


is called an upper triangular matrix.

4 / 40



Numerical Linear Algebra Direct Solvers Iteration methods

Properties of triangle matrix

We say L is unit lower triangular if ℓii = 1 for i = 1, 2, . . . , n.
The transpose of an upper triangular matrix is a lower triangular matrix
and vice versa.

A matrix which is both symmetric and triangular is diagonal.
If U is upper triangular and invertible, then U−1 is upper triangular.
The inverse of a unit lower triangular matrix is a unit lower triangular.
The product of two upper (lower) triangular matrices is upper (lower)
triangular.
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Forward Substitution
The matrix equation Lx = b can be written as a system of linear equations

ℓ1,1x1 = b1

ℓ2,1x1 + ℓ2,2x2 = b2

...
...

. . .
...

ℓn,1x1 + ℓn,2x2 + · · ·+ ℓn,nxn = bn

The solution can be written as

x1 =
b1

ℓ1,1
,

x2 =
b2 − ℓ2,1x1

ℓ2,2
,

...

xn =
bn −

∑n−1
i=1 ℓn,ixi

ℓn,n
.
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Inverse of matrix
Idea: The n columns of a nonsingular n × n matrix A form a basis for the
whole space Rn. Therefore, we can uniquely express any vector as a linear
combination of them. In particular, the canonical unit vector with 1 in the j
th entry and zeros elsewhere, written ej , can be expanded:

ej =
n∑

i=1

zijai , j = 1, 2, . . . , n

Let Z be the matrix with entries zij , and let zj denote the j th column of Z .
Then the above can be written ej = Azj . It can be written concisely as e1 · · · en

 = I = AZ , (2)

where I is the n × n matrix known as the identity. The matrix Z is the
inverse of A. Any square nonsingular matrix A has a unique inverse, written
A−1, that satisfies AA−1 = A−1A = I .
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Inverse of matrix

Theorem 1.1 (Equivalent properties of inverse matrix)

For A ∈ Rn×n, the following conditions are equivalent:
1 A has an inverse A−1

2 rank(A) = n

3 range (A) = Rn

4 null(A) = {0}
5 0 is not an eigenvalue of A
6 0 is not a singular value of A
7 det(A) ̸= 0
8 The equation Ax = 0 implies x = 0
9 For each b ∈ Rn, there is exactly one x ∈ Rn such that Ax = b
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Norms in vector space

To measure vectors, we assign vectors nonnegative numbers.
When p ≥ 1, we define p-norm of vector x ∈
Rn as

∥x∥p ≜

(
n∑

i=1

|xi |p
)1/p

(3)

Some useful properties:
∥x∥2 ≤ ∥x∥1 ≤ √

n∥x∥2

∥x∥∞ ≤ ∥x∥2 ≤ √
n∥x∥∞

∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞
Cauchy-Schwarz inequality:
|⟨x , y⟩| ≤ ∥x∥2 · ∥y∥2

Triangle Inequality
∥x + y∥p ≤ ∥x∥p + ∥y∥p

The values of coordinates
(x1, x2), for which the p-norm
∥x∥p takes the value 1, i.e.

∥x∥p = 1
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Matrix Norm

Definition 1.2 (Matrix Norm)
Consider a vector space of matrices with m rows and n columns. A matrix
norm is a function ∥·∥ : Km×n → R that must satisfy the following properties:
For all scalars α ∈ K and matrices A,B ∈ Km×n,

Nonnegativity: ∥A∥ ≥ 0, unique zero: ∥A∥ = 0 ⇔ A = 0m×n

Absolutely homogeneous: ∥αA∥ = |α| · ∥A∥
Triangle inequality: ∥A + B∥ ≤ ∥A∥+ ∥B∥

Forbenius norm: ∥A∥F :=
(∑n

i ,j=1 |aij |2
)1/2

Operator norm: ∥A∥p = supx ̸=0
∥Ax∥p
∥x∥p , where 1 ≤ p ≤ ∞
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Matrix properties
Inverse of Simple Matrix
Given an invertible matrix A ∈ R2×2, we have

A =

[
a b
c d

]
,A−1 =

1
detA

[
d −b
−c a

]
=

1
ad − bc

[
d −b
−c a

]
.

Matrix Condition number

max
e,b ̸=0

{∥∥A−1e
∥∥

∥e∥
∥b∥

∥A−1b∥

}
= max

e ̸=0

{∥∥A−1e
∥∥

∥e∥

}
max
b ̸=0

{ ∥b∥
∥A−1b∥

}

= max
e ̸=0

{∥∥A−1e
∥∥

∥e∥

}
max
x ̸=0

{∥Ax∥
∥x∥

}
=
∥∥A−1∥∥ · ∥A∥.
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Eigenvalues of symmetric matrices

Definition 1.3 (Symmetric matrix)

Given any A ∈ Rn×n, if A⊤ = A, then we call A is a symmetric matrix.

Definition 1.4 (Orthonormal)
A set of vectors S is orthonormal if the elements of the set are unit vectors
that are pairwise orthogonal. Let S = {u, v}, then ∥u∥ = 1, ∥v∥ = 1 and
u⊤v = 0.

Theorem 1.5 (Real eigenvalues of A)

Assume that A ∈ Rn×n is symmetric with real entries. Then the eigenvalues
are real numbers, and the set of unit eigenvectors of A is an orthonormal set
S = {w1, . . . ,wn} that forms a basis of Rn.
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Symmetric positive-definite matrices

Definition 1.6 (Symmetric Positive-Definite (SPD))

The matrix A ∈ Rn×n if A⊤ = A. The matrix A is positive-definite if
x⊤Ax > 0 for all vectors x ̸= 0.

Example:

Show that A =

[
2 2
2 5

]
is SPD: A is symmetric as A⊤ = A and applies

definition

x⊤Ax =
[
x1 x2

] [2 2
2 5

] [
x1
x2

]
= 2x2

1 + 4x1x2 + 5x2
2 = 2(x1 + x2)

2 + 3x2
2 .

A =

[
2 4
4 5

]
is not SPD. One can show that

x⊤Ax = 2(x1 + 2x2)
2 − 3x2

2 with x1 = −2 and x2 = 1.
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SPD matrices
Theorem 1.7
If A ∈ Rn× is a symmetric matrix, then A is positive-definite if and only if
all of its eigenvalues are positive.

Proof.
Notice that if A is positive-definite and Av = λv for a nonzero vector v ,
then 0 < v⊤Av = v⊤(λv) = λ∥v∥2

2. Hence, λ > 0.
On the other hand, if all eigenvalues of A are positive, then write any nonzero
x = c1v1 + . . .+ cnvn where each vi are orthonormal unit vectors and not
all ci are zero. Then, we have

x⊤Ax = (c1v1 + · · ·+ cnvn)⊤(c1λ1v1 + · · ·+ cnλnvn)

= λ1∥c1∥2
2 + · · ·+ λn∥cn∥2

2 > 0.

■
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Gaussian Elimination

The Naive Gaussian Elimination
Add or subtract a multiple of one equation from another
Multiply an equation by a nonzero constant[

a11 a12 . . . a1n | b1
a21 a22 . . . a2n | b2

]
Subtract a21

a11
times row 1 from row 2, we have

[
a11 a12 . . . a1n | b1
0 a22 − a21

a11
a12 . . . a2n − a21

a11
a1n | b2 − a21

a11
b1

]
Repeat the above procedure until we find U
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Gaussian Elimination: LU Factorization
The idea of transforming A into an upper triangular U by introducing zeros
below the diagonal by subtracting multiples of each row from subsequent
rows. This process is equivalent to multiplying A by a sequence of lower
triangular Lk on the left:

Ln−1 · · ·L2L1︸ ︷︷ ︸
L−1

A = U .

Setting L = L−1
1 L−1

2 · · ·L−1
n−1 gives A = LU . Thus we obtain

A = LU .

U is upper triangular
L is unit lower triangular (diagonals are all ones)
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LU Factorization: An example

Let us consider A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


First step of Gaussian elimination

L1A =


1

−2 1
−4 1
−3 1




2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


2 1 1 0

1 1 1
3 5 5
4 6 8


The second step

L2L1A =


1

1
−3 1
−4 1




2 1 1 0
1 1 1
3 5 5
4 6 8

 =


2 1 1 0

1 1 1
2 2
2 4
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LU Factorization: An example (continued)

L3L2L1A =


1

1
1

−1 1




2 1 1 0
1 1 1

2 2
2 4

 =


2 1 1 0

1 1 1
2 2

2

 = U

Compute the product L = L−1
1 L−1

2 · · ·L−1
n−1.

L−1
i is just Li itself, but with each entry below the diagonal negated

L−1
1 L−1

2 · · ·L−1
n−1 is just the unit lower-triangular matrix with the

nonzero subdiagonal entries of L−1
i inserted in the appropriate places.

1
−2 1
−4 1
−3 1


−1

L−1
1

=


1
2 1
4 1
3 1

,


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


A

=


1
2 1
4 3 1
3 4 1 1


L


2 1 1 0

1 1 1
2 2

2


U
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Naive Gaussian Elimination

Algorithm 1 Naive Gaussian Elimination
1: U = A,L = I
2: for k = 1 to n − 1 do
3: for j = k + 1 to n do
4: ℓjk = ujk/ukk
5: uj ,k:n = uj ,k:n − ℓjkuk,k:n

6: end for
7: end for

Memory usage
To minimize memory use on the computer, both L and U can be
written into the same array as A.
Time complexity

n−1∑
k=1

n∑
j=k+1

(n − k + 1) ∼ 2
3
n3 flops.
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Instability of Naive Guassian Elmination

Consider A =

[
0 1
1 1

]
.

A has full rank with κ(A) = (3 +
√

5)/2 ≈ 2.618 in the ℓ2 − norm.
We cannot do Gaussian Elimination without swapping.

Consider A =

[
10−20 1
1 1

]
.

1020 times the first row is subtracted from the second row:

L =

[
1 0

1020 1

]
, U =

[
10−20 1

0 1 − 1020

]
Suppose ϵmach ≈ 10−16. The number 1 − 1020 will not be represented
exactly; it will be rounded to the nearest floating point number.
Suppose that this is exactly −1020.
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Instability of Naive Guassian Elmination

L̃ =

[
1 0

1020 1

]
, Ũ =

[
10−20 1

0 −1020

]
⇒ L̃Ũ =

[
10−20 1

1 0

]

The above example gives A ̸= L̃Ũ .
The error could be large when we solve Ax = b. For example, with
b = [1, 0]⊤ we get x̃ = [0, 1]⊤, whereas the correct solution is
x ≈ [−1, 1]⊤.

To summarize, we know
For certain matrices, Naive Gaussian Elimination fails entirely because it
attempts division by zero.
Gaussian elimination, as presented so far, is unstable for solving general
linear systems (from backward substitution)
It is also unstable at forward substitution (image that xkk is too small)
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Pivoting
Pivot At step k of Gaussian elimination, multiples of row k are subtracted
from rows k + 1, . . . , n of the working matrix X in order to introduce zeros
in entry k of these rows. In this operation, row k , column k , and especially
the entry xkk play special roles. We call xkk the pivot. From every entry in
the submatrix Xk+1:n,k:n is subtracted the product of a number in row k and
a number in column k , divided by xkk

× × × × ×
xkk × × ×
× × × ×
× × × ×
× × × ×

 =⇒


× × × × ×

xkk × × ×
0 × × ×
0 × × ×
0 × × ×


Why the kth row and column must be chosen?

We are free to choose any entry of Xk:n,k:n as the pivot, as long as it is
nonzero.
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Pivoting Strategies
Complete pivoting If every entry of Xk:n,k:n is considered as a possible
pivot at step k , there are O

(
(n − k)2

)
entries to be examined to

determine the largest. Summing over n steps, the total cost of selecting
pivots becomes O

(
n3) operations, adding significantly to the cost of

Gaussian elimination.

Partial pivoting Only rows are interchanged. The pivot at each step is
chosen as the largest of the n − k + 1 sub diagonal entries in column k ,
incurring a total cost of only O(n − k) operations for selecting the
pivot at each step, O

(
n2) operations overall.

× × × × ×
× × × ×
× × × ×
xik × × ×
× × × ×

 P1−→


× × × × ×

xik × × ×
× × × ×
× × × ×
× × × ×

 L1−→


× × × × ×

xik × × ×
0 × × ×
0 × × ×
0 × × ×


After n − 1 steps, A becomes an upper-triangular matrix U :

Ln−1Pn−1 · · ·L2P2L1P1A = U
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Partial pivoting: Example

Consider A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


Interchange the first and third rows (left-multiplication by P1 ):

1
1

1
1




2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


8 7 9 5
4 3 3 1
2 1 1 0
6 7 9 8


The elimination step now looks like this (left-multiplication by L1)

1
−1/2 1
−1/4 1
−3/4 1




8 7 9 5
4 3 3 1
2 1 1 0
6 7 9 8

 =


8 7 9 5

−1/2 −3/2 −3/2
−3/4 −5/4 −5/4

7/4 9/4 17/4
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Partial pivoting: Example (Continued)

The second and fourth rows are interchanged (multiplication by P2)
1

1
1

1




8 7 9 5
−1/2 −3/2 −3/2
−3/4 −5/4 −5/4

7/4 9/4 17/4

 =


8 7 9 5

7/4 9/4 17/4
−3/4 −5/4 −5/4
−1/2 −3/2 −3/2


Second elimination step (multiplication by L2)

1
1
3
7 1
2
7 1




8 7 9 5
7
4

9
4

17
4

−3
4 −5

4 −5
4

−1
2 −3

2 −3
2

 =


8 7 9 5

7
4

9
4

17
4

−2
7

4
7

−6
7 −2

7
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Partial pivoting: Example (Continued)

After P3
1

1
1

1




8 7 9 5
7
4

9
4

17
4

−2
7

4
7

−6
7 −2

7

 =


8 7 9 5

7
4

9
4

17
4

−6
7 −2

7
−2

7
4
7


After L3

1
1

1
−1

3 1




8 7 9 5
7
4

9
4

17
4

−6
7 −2

7
−2

7
4
7

 =


8 7 9 5

7
4

9
4

17
4

−6
7 −2

7
2
3
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Partial pivoting: Example (Continued)

The final matrix PA = LU
1

1
1

1




2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


1
3
4 1
1
2 − 2

7 1
1
4 − 3

7
1
3 1

 =


8 7 9 5

7
4

9
4

17
4

− 6
7 − 2

7
2
3


All the subdiagonal entries of L are ≤ 1 in magnitude, a consequence of
the property |xkk | = maxj |xjk | by this partial pivoting.
L3P3L2P2L1P1A = U
It is equivalent to PA = LU , why ?
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Gaussian Elimination with Partial Pivoting
Algorithm 2 Gaussian Elimination with Partial Pivot-
ing
1: U = A,L = I ,P = I
2: for k = 1 to n − 1 do
3: Select i ≥ k to maximize |uik |
4: Interchange two rows uk,k:n ↔ ui ,k:n
5: ℓk,1:k−1 ↔ ℓi ,1:k−1
6: pk,: ↔ pi ,:
7: for j = k + 1, k + 2, . . . , n do
8: ℓjk = ujk/ukk
9: uj ,k:n = uj ,k:n − ℓjkuk,k:n

10: end for
11: end for

Memory usage One array as A.
Time complexity

∑n−1
k=1

∑n
j=k+1(n − k + 1) ∼ 2

3n
3 flops.
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Cholesky Factorization

Theorem 2.1 (Cholesky Theorem on LL⊤-Factorization)
If A is a real, symmetric, and positive definite matrix, then it has
a unique factorization, A = LL⊤, in which L is lower triangular
with a positive diagonal.

The complexity of computing L is ∼ n3/3 flops
L is called the Cholesky factor of A
It can be interpreted as the “square root” of a p.d. matrix
It gives a practical method for testing positive definiteness
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Intuition of iteration methods

Ax = b,

where A ∈ Rn×n, x ∈ Rn,b ∈ Rn. Suppose x0 be the initial guess of x∗.
We can measure the estimation error:

e0 ≜ A−1b − x0,

then the solution can be expressed as

x∗ = x0 + e0.

e0 is unknown (hard as the original). Fortunately, we know the residual:

r0 ≜ b − Ax0.

Notice that Ax∗ = Ax0 + Ae0 ⇔ b = Ax0 + Ae0. Hence r0 = Ae0.
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Intuition of iteration methods

Intuition: We already know that r0 = Ae0. If there is an M such that
M−1Ae0 ≈ e0, i.e., M−1A ≈ I , then we can use M−1r0 to approximate
e0. Let

Mz0 = r0 ⇔ z0 = M−1r0 ≈ e0. (4)

M−1 must be cheap!

We hope x1 = x0 + z0 is getting closer to x∗. To summarize:
1 Step 1: Compute residual: r0 = b − Ax0

2 Step 2: Solve Mz0 = r0 and use M−1r0 to approximate e0

3 Step 3: Get a better solution: x1 = x0 + z0

Repeat the above steps until the stop condition is satisfied.
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A general idea of iteration methods

We summarize the idea and write it as a linear iteration:

Algorithm 3 Iteration(x0,A,b,M)

1: x0,A,b,M be initial guesses
2: for t = 0, 1, . . . , do
3: Com. Residual r t = b − Ax t

4: Com. Approximate estimation error z t = M−1r t

5: Update x t+1 = x t + z t

6: end for
7: Return x t+1

Q1: How do we design M ?
Q2: When will this method converge under what condition?
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Jacobi Method
Every i-th equation of Ax = b is

n∑
j=1

aijxj = bi .

To solve the problem, for each xi at t-th iteration, assume other entries of x
remain fixed. This gives

x t+1
i =

bi −
∑

j ̸=i aijx
t
j

aii
.

Notice diagonal elements of A appears in denominator and
∑

j ̸=i aij can be
decomposed into two parts

∑
j<i aij +

∑
j>i aij . Denote

A = L + D + U .
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Jacobi Method

In the matrix form, the Jacobi method is:

x0 = initial vector

xt+1 = D−1(b − (L + U)xt) for t = 0, 1, 2, . . .

In the form of Fixed-Point Iteration:

xt+1 = g(xt), where g(xt) = D−1(b − (L + U)xt)

To show that Jacobi is FPI, we have

Ax = b
(D + L + U)x = b

Dx = b − (L + U)x .
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Jacobi Method
Jacobi method:

x0 = initial vector

xt+1 = D−1(b − (L + U)xt) for t = 0, 1, 2, . . .

Recall we have an iterative method

Algorithm 4 Iteration(x0,A,b,M)

1: x0 be initial guesses
2: for t = 0, 1, . . . , do
3: r t = b − Ax t

4: z t = M−1r t

5: x t+1 = x t + z t

6: end for
7: Return x t+1

Quiz: Find a suitable M
and then show that Jacobi
method is equivalent to Iter-
ation method. (5 minutes)
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Jacobi - An example
An example of the Jacobi method:[

3x0 + x1 = 5
x0 + 2x1 = 5

]
with an initial guess

[
x0
x1

]
=

[
0
0

]
.

[
x0
0
x0
1

]
=

[
0
0

]
[
x1
0
x1
1

]
=

[
5−x0

0
3

5−x0
1

2

]
=

[5
3
5
2

]
[
x2
0
x2
1

]
=

[
5−x1

0
3

5−x1
1

2

]
=

[5
6
5
3

]
[
x3
0
x3
1

]
=

[
5−x2

0
3

5−x2
1

2

]
=

[10
9
25
12

]

Observation: The most re-
cently updated values of the
unknowns are not used at each
step.
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Gauss-Seidel
Gauss-Seidel: the most recently updated values of the unknowns are used at
each step. Example:  3 1 −1

2 4 1
−1 2 5

uv
w

 =

4
1
1


The iteration goes to

ut+1 =
4 − vt + wt

3

vt+1 =
1 − 2ut+1 − wt

4

wt+1 =
1 + ut+1 − 2vt+1

5
.

x t+1
i =

bi −
∑

j<i aijx
t+1
j −∑j>i aijx

t
j

aii
, for i = 1, 2, . . . , n. (5)
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Gauss-Seidel
An alternative way: The most recently updated values of the unknowns are
used at each step, even if the updating occurs in the current step.
Gauss-Seidel Method:

x0 = an initial vector

x t+1 = D−1 (b − Ux t − Lx t+1) for k = 0, 1, 2, . . . .

Algorithm 5 Iteration(x0,A,b,M)

1: x0 be initial guesses
2: for t = 0, 1, . . . , do
3: r t = b − Ax t

4: z t = M−1r t

5: x t+1 = x t + z t

6: end for
7: Return x t+1

Quiz: Find a suitable M and
then show that Gauss-Seidel
method is equivalent to Iter-
ation method. (5 minutes)
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Comparison between Jacobi and Gauss-Seidel
An example:[

2x0 − x1 = 1
−1x0 + 2x1 = 1

]
, where A =

[
2 −1
−1 2

]
,b =

[
1
1

]
We use Jacobi and Gauss-Seidel with x0 = [0, 0]⊤.

0 2 4 6 8 10 12 14 16 18 20

Iterations

−10

−8

−6

−4

−2

0

lo
g 1

0
‖x

t
−

x
∗ ‖

2

Jacobi

Gauss-Seidel

Gauss-Seidel converges faster
than Jacobi in this example.
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Successive Over-Relaxation

Can we do better?
Idea of Successive Over-Relaxation: define each component of the new guess
x t+1 as a weighted average of ω times the Gauss-Seidel formula and 1 − ω
times the current guess x t .
SOR method:

x
(t+1)
i = (1 − ω)x

(t)
i +

ω

aii

bi −
∑
j<i

aijx
(t+1)
j −

∑
j>i

aijx
(t)
j

 , (6)

where i = 1, 2, . . . , n.
SOR method is equivalent to Iteration method when M = D

ω − L.
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